
New Algorithms for Multiplayer Bandits

Abbas Mehrabian

McGill University

IVADO Fellow

23 September 2019

Co-authors: Etienne Boursier, Emilie Kaufmann, Gabor Lugosi,

Vianney Perchet

1



The multi-armed bandit problem

The multi-armed bandit model

1. A multi-round single player game, a �nite set of actions.

2. In each round the player chooses one of the actions and

receives a (stochastic) reward.

3. The rewards of each action come from some unknown

distribution.
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The multi-armed bandit problem

The multi-armed bandit model

1. A multi-round single player game, a �nite set of actions.

2. In each round the player chooses one of the actions and

receives a (stochastic) reward.

3. The rewards of each action come from some unknown

distribution.

Oracle's strategy. In all rounds, choose the action with the

largest expected reward.

Regret of a learning algorithm: di�erence between algorithm's

total reward and the oracle's total reward.
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The multi-armed bandit problem

known results

T rounds, K arms, ∆ = gap between best arm and second-best

arm

Theorem (Lai and Robbins 1985, Auer, Cesa-Bianchi,

Fischer 1998)

If each single reward 2 [0, 1], there is an algorithm with

regret K logT/∆, and this is tight.

Per round suboptimality → logT
T

� K

∆

Upper con�dence bound (UCB) algorithm.
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Multiplayer multi-armed bandits

Opportunistic spectrum access in cognitive radios
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Rules of the game

1. The players pull arms simultaneously. If more than one

players pull some arm, they all get zero reward.

2. Two feedback models: visible collisions versus invisible

collisions

3. Players cannot talk during the game, and do not see each

other's actions.

4. Rewards 2 [0, 1].

5. Time horizon, number of players/arms are known.

6. Number of arms � number of players

Regret = Expected total system reward obtainable by oracle

− Expected total system reward obtained by algorithm
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I: Invisible Collisions
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Multiplayer multi-armed bandits

Our algorithm for invisible collisions

M players, K arms, ∆ = gap between arm M and M + 1

Theorem (Lugosi, M 2018)

In the harder setup that players do not observe collisions,

there exists a polynomial-time algorithm with regret

. (KM/∆2)logT .

Two main phases:

1. Determine the M best arms.

2. Occupy one of these arms.
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Phase 2: occupy one of the best M arms

Musical chairs subroutine

M players, K arms, ∆ = gap between arm M and M + 1

Musical chairs (MC) subroutine [Rosenski, Shamir,

Szlak'16]

1. Pull one of the M best arms randomly.

2. If positive reward received, pull the same arm in

subsequent rounds.

3. Otherwise, go to 1.
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with probability 1− δ.
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Phase 1: �nd the best M arms

The single-player case

M players, K arms, ∆ = gap between arm M and M + 1

Hoe�ding's inequality. If X1, . . . ,Xn ∼ X 2 [0, 1], then

Pr

2
4
������
1

n

n∑
i=1

Xi −EX > t

������

3
5 < 2 exp(−2nt2).

Corollary. Arm i has been pulled n times. Can build a

con�dence interval of width
p
log(1/δ)/n .

Algorithm. Pull arms in a round-robin manner, until M of the

con�dence intervals lie strictly above the other intervals.

Number of rounds until this happens . K log(1/δ)/∆2.
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Phase 1: �nd the best M arms

The multiplayer case

First problem: can't do round-robin.

Solution: do random exploration
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Phase 1: �nd the best M arms

The multiplayer case

First problem: can't do round-robin. Do random exploration.

Second problem: can't get unbiased estimator for means,

because of collisions.

expected reward from arm i = mean of arm i �(1− 1/K )M−1, so

average reward from arm i

(1−1/K)M−1 is unbiased estimator for mean of arm i
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Phase 1: �nd the best M arms

The multiplayer case

First problem: can't do round-robin.

Second problem: can't get unbiased estimator for means,

because of collisions. Divide by (1− 1/K )M−1.

Third problem: if some arm switches to Phase 2 earlier, the

no-collision probability is wrong!

τ := time a player discovers the M best arms. Then,

τ 2 [K log(1/δ)/∆2, 25K log(1/δ)/∆2].
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Multiplayer multi-armed bandits

Our algorithm for invisible collisions

M players, K arms, ∆ = gap between arm M and M + 1

The Algorithm

1. Pull arms randomly and keep con�dence intervals, until

the gap is discovered at time τ.

2. Pull arms randomly for 24τ rounds.

3. Run musical chairs.

Analysis. δ = 1/MT

Rounds to stabilize . K log(1/δ)/∆2 +M log(M/δ)/∆

Regret .MK log(MT )/∆2 +M 2 log(M 2T )/∆+ 1

22



Invisible collisions: known results
M players, K arms, ∆ = gap between arm M and M + 1,

µ = known lower bound for all means

Instance-dependent upper bounds for regret

1. (KM/∆2)logT [Lugosi, M'18]

2. (KM/∆+K 2M/µ) logT [Boursier, Perchet'18]

Best known lower bound: (K/∆) logT

[Anantharam, Varaiya, Walrand'87]

General upper bounds for regret

3. K 2M log2(T )/µ+KM
p
T logT [Lugosi, M'18]

4. K 2M logT/µ+K
p
MT logT [Boursier, Perchet'18]

Best known lower bound (for M = 1):
p
KT

[Auer, Cesa-Bianchi, Freund, Schapire'95]
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II: Visible Collisions
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Visible collisions: known results
M players, K arms, ∆ = gap between arm M and M + 1

Instance-dependent upper bounds for regret

1. ζ(M ,K , ∆) logT [Liu and Zhao'10]

2. (KM/∆2) logT [Rosenski, Shamir, Szlak'16]

3. (KM/∆) logT [Lugosi, M'18]

Best known lower bound: (K/∆) logT

[Anantharam, Varaiya, Walrand'87]

General upper bounds for regret

4. KM
p
T logT [Lugosi, M'18]

Best known lower bound (for M = 1):
p
KT

[Auer, Cesa-Bianchi, Freund, Schapire'95]
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Our algorithm for visible collisions

The single-player case

Epoch-based arm-elimination algorithm

1. All arms are alive initially

2. In epoch i :

2.1 pull each alive arm 2i times.

2.2 update con�dence intervals.

2.3 if interval of some arm lies below another active arm, kill it.
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Our algorithm for visible collisions

The single-player case

Epoch-based arm-elimination algorithm

1. All arms are alive initially

2. In epoch i :

2.1 pull each alive arm 2i times.

2.2 update con�dence intervals.

2.3 if interval of some arm lies below another active arm, kill it.

Analysis. An arm with gap ∆ will be pulled . 4 log(T )/∆2

times, hence its contribution to regret

. min{4 log(T )/∆,∆T } � 2
p
T logT ,

Regret . 2K
p
T logT
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Our algorithm for visible collisions

The single-player case

Epoch-based arm-elimination algorithm

1. All arms are alive initially

2. In epoch i :

2.1 pull each alive arm 2i times.

2.2 update con�dence intervals.

2.3 if interval of some arm lies below another active arm, kill it.

Di�culties for multiplayer case:

1. not enough to kill bad arms; must also pull the discovered

good arms

2. coordinate the explorations
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Our algorithm for visible collisions

The multiplayer case

Epoch-based arm-elimination algorithm

Each arm is either golden, silver, or dead.

1. All arms are silver initially

2. In epoch i :

2.1 pull each silver arm 2i times.

(distribute silver arms between players via MC).

2.2 update con�dence intervals.

2.3 mark arms as golden or dead as necessary.

2.4 try to occupy new golden arms (using MC).

Regret .M min{K log(T )/∆,K
p
T logT }
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Visible collisions: known results
M players, K arms, ∆ = gap between arm M and M + 1

Instance-dependent upper bounds for regret
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Adversarial case

Known results

Upper bounds for the regret (visible collisions):

1. K 2T 2/3 [Alatur, Levy, Krause'19]

2. K 2T 1/2 for M = 2 [Bubeck, Li, Peres, Selke'19]

Upper bounds for the regret (invisible collisions):

1. KT 3/4 for M = 2 [Bubeck, Li, Peres, Selke'19]
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Open questions

Simpler algorithms? Such as UCB, EXP3?

Better lower bounds?
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III: Visible Collisions, Heterogeneous Setting

37



Multiplayer multi-armed bandits

Heterogeneous setting

Distributed online stochastic maximum-weight matching

Cooperative game-theoretic situation:

channel 1 channel 2 channel 3

Player 1 1 0.9 0.2

Player 2 1 0.1 0.3
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Heterogeneous setting

Known results

M players, K arms, ∆ = gap between value of best matching and

second best value, ε > 0 arbitrary

Instance-dependent upper bounds

1. ζ(M ,K , ∆, ε)(logT )1+ε [Bistritz and Leshem'19]

2. ζ(ε)M 3K (logT/∆)1+ε [Boursier, Perchet, Kaufmann, M'19]

3. M 3K log(T )/∆ if the maximum matching is unique.

General upper bounds

4. KM 2
p
T logT [Boursier, Perchet, Kaufmann, M'19]

Conjecture: if collisions are invisible, regret is linear.
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Algorithm description

Leader election and implicit communication

Leader election

1. Players start by running musical chairs.

2. Player occupying smallest chair becomes the leader.

3. Players will use their arms to communicate with the leader

via collisions.

Each communicated bit adds M to regret.
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Algorithm description

eliminating edges

1. Players explore the edges, get better estimates for the

means, communicate to leader.

2. Leader eliminates useless edges gradually.
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Algorithm outline

1. Leader is elected.

2. E ← all edges

3. For epoch i = 1, 2, . . . ,

3.1 Leader: for each e 2 E , �nd max matching containing e ,

send these matchings to players.

3.2 Players: pull each received matching 2i times, send updated

mean estimates to leader.

3.3 Leader: for each e 2 E , �nd max matching containing e ,

using updated estimates. Eliminate e if its gap is large.

Analysis (unique maximum matching). A matching with gap ∆

is detected to be non-optimal as soon as edge mean accuracy

� ∆/M , i.e., epoch log2

�
log(T )
(∆/M )2

�
.

The matching is pulled . M 2

∆2
log(T )�KM times.

Regret . min{KM 3 log(T )/∆,KM∆T } � KM 2
p
T logT .
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Analysis

Multiple optimal matchings

Number of bits to send in epoch i = Θ(i), so

total communication bits =
∑log

2
(T )

i=1 Θ(i) = Θ(log2T ).

Can make this (logT )1+1/c by epoch sizes 2i
c

Final regret bound � 22
c
c

MK (M 2 log(T )/∆)1+1/c

46



Heterogeneous setting

Known results
M players, K arms, ∆ = gap between value of best matching and

second best value,

T rounds, ε > 0 arbitrary

Instance-dependent upper bounds

1. ζ(M ,K , ∆, ε)(logT )1+ε [Bistritz and Leshem'19]

2. 22
2
1/ε

M 3K (logT/∆)1+ε [Boursier, Perchet, Kaufmann, M'19]

3. M 3K log(T )/∆ if the maximum matching is unique.

General upper bounds

4. KM 2
p
T logT [Boursier, Perchet, Kaufmann, M'19]

Question: Regret O(logT ) while multiple optimal matchings?
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K = M = 3, ∆ = 0.35, unique maximum matching



K = M = 5, ∆ = 0.001, multiple maximum matchings




