New Algorithms for Multiplayer Bandits

Abbas Mehrabian

McGill University
IVADO Fellow

23 September 2019

Co-authors: Etienne Boursier, Emilie Kaufmann, Gabor Lugosi, Vianney Perchet

The multi-armed bandit problem

The multi-armed bandit model

- 1. A multi-round single player game, a finite set of actions.
- 2. In each round the player chooses one of the actions and receives a (stochastic) reward.
- The rewards of each action come from some unknown distribution.

The multi-armed bandit problem

The multi-armed bandit model

- 1. A multi-round single player game, a finite set of actions.
- 2. In each round the player chooses one of the actions and receives a (stochastic) reward.
- 3. The rewards of each action come from some unknown distribution.

Oracle's strategy. In all rounds, choose the action with the largest expected reward.

Regret of a learning algorithm: difference between algorithm's total reward and the oracle's total reward.

The multi-armed bandit problem known results

T rounds, K arms, $\Delta = \mathrm{gap}$ between best arm and second-best arm

Theorem (Lai and Robbins 1985, Auer, Cesa-Bianchi, Fischer 1998)

If each single reward $\in [0,1]$, there is an algorithm with regret $K \log T/\Delta$, and this is tight.

Per round suboptimality $ightarrow rac{\log\,T}{T} imes rac{K}{\Delta}$

Upper confidence bound (UCB) algorithm.

Multiplayer multi-armed bandits Opportunistic spectrum access in cognitive radios

Rules of the game

- 1. The players pull arms simultaneously. If more than one players pull some arm, they all get zero reward.
- 2. Two feedback models: visible collisions versus invisible collisions
- 3. Players cannot talk during the game, and do not see each other's actions.
- 4. Rewards $\in [0, 1]$.
- 5. Time horizon, number of players/arms are known.
- 6. Number of arms \geq number of players

Rules of the game

- 1. The players pull arms simultaneously. If more than one players pull some arm, they all get zero reward.
- 2. Two feedback models: visible collisions versus invisible collisions
- 3. Players cannot talk during the game, and do not see each other's actions.
- 4. Rewards $\in [0, 1]$.
- 5. Time horizon, number of players/arms are known.
- 6. Number of arms \geq number of players

Regret = Expected total system reward obtainable by oracle

- Expected total system reward obtained by algorithm

I: Invisible Collisions

Multiplayer multi-armed bandits Our algorithm for invisible collisions

M players, K arms, $\Delta = \mathrm{gap}$ between arm M and M+1

Theorem (Lugosi, M 2018)

In the harder setup that players do not observe collisions, there exists a polynomial-time algorithm with regret $\lesssim (\mathit{KM}/\Delta^2) log~T$.

Multiplayer multi-armed bandits Our algorithm for invisible collisions

M players, K arms, $\Delta = \mathrm{gap}$ between arm M and M+1

Theorem (Lugosi, M 2018)

In the harder setup that players do not observe collisions, there exists a polynomial-time algorithm with regret $\lesssim (KM/\Delta^2)\log T$.

Two main phases:

- 1. Determine the M best arms.
- 2. Occupy one of these arms.

Phase 2: occupy one of the best *M* arms Musical chairs subroutine

M players, K arms, $\Delta = \text{gap}$ between arm M and M+1

Musical chairs (MC) subroutine [Rosenski, Shamir, Szlak'16]

- 1. Pull one of the M best arms randomly.
- 2. If positive reward received, pull the same arm in subsequent rounds.
- 3. Otherwise, go to 1.

Phase 2: occupy one of the best *M* arms Musical chairs subroutine

M players, K arms, $\Delta = \text{gap between arm } M$ and M+1

Musical chairs (MC) subroutine [Rosenski, Shamir, Szlak'16]

- 1. Pull one of the M best arms randomly.
- 2. If positive reward received, pull the same arm in subsequent rounds.
- 3. Otherwise, go to 1.

Lemma. Number of rounds to stabilize $\leq 4M \log(M/\delta)/\Delta$ with probability $1 - \delta$.

Phase 2: occupy one of the best *M* arms Musical chairs subroutine

M players, K arms, $\Delta = \text{gap between arm } M$ and M+1

Musical chairs (MC) subroutine [Rosenski, Shamir, Szlak'16]

- 1. Pull one of the M best arms randomly.
- 2. If positive reward received, pull the same arm in subsequent rounds.
- 3. Otherwise, go to 1.

Lemma. Number of rounds to stabilize $\leq 4M \log(M/\delta)/\Delta$ with probability $1 - \delta$.

Phase 1: find the best *M* arms The single-player case

M players, K arms, $\Delta = \text{gap between arm } M$ and M+1 Hoeffding's inequality. If $X_1, \ldots, X_n \sim X \in [0,1]$, then

$$\left.\mathbf{Pr}\left[\left|rac{1}{n}\sum_{i=1}^{n}X_{i}-\mathbf{E}X>t
ight|
ight]<2\exp(-2nt^{2}).$$

Corollary. Arm i has been pulled n times. Can build a confidence interval of width $\sqrt{\log(1/\delta)/n}$.

Phase 1: find the best *M* arms The single-player case

M players, K arms, $\Delta = \text{gap between arm } M$ and M+1 Hoeffding's inequality. If $X_1, \ldots, X_n \sim X \in [0,1]$, then

$$\left.\mathbf{Pr}\left[\left|rac{1}{n}\sum_{i=1}^{n}X_{i}-\mathbf{E}X>t
ight|
ight]<2\exp(-2nt^{2}).$$

Corollary. Arm i has been pulled n times. Can build a confidence interval of width $\sqrt{\log(1/\delta)/n}$.

Algorithm. Pull arms in a round-robin manner, until M of the confidence intervals lie strictly above the other intervals. Number of rounds until this happens $\lesssim K \log(1/\delta)/\Delta^2$.

First problem: can't do round-robin.

First problem: can't do round-robin.

Solution: do random exploration

First problem: can't do round-robin. Do random exploration.

Second problem: can't get unbiased estimator for means, because of collisions.

First problem: can't do round-robin. Do random exploration.

Second problem: can't get unbiased estimator for means, because of collisions.

expected reward from arm i= mean of arm $i\times (1-1/K)^{M-1},$ so

 $\frac{\text{average reward from arm }i}{(1-1/K)^{M-1}}$ is unbiased estimator for mean of arm i

First problem: can't do round-robin.

Second problem: can't get unbiased estimator for means, because of collisions. Divide by $(1-1/K)^{M-1}$.

Third problem: if some arm switches to Phase 2 earlier, the no-collision probability is wrong!

First problem: can't do round-robin.

Second problem: can't get unbiased estimator for means, because of collisions. Divide by $(1-1/K)^{M-1}$.

Third problem: if some arm switches to Phase 2 earlier, the no-collision probability is wrong!

 $\tau \coloneqq \text{time a player discovers the } M \text{ best arms. Then,}$ $\tau \in [K \log(1/\delta)/\Delta^2, 25K \log(1/\delta)/\Delta^2].$

Multiplayer multi-armed bandits Our algorithm for invisible collisions

M players, K arms, $\Delta = \text{gap}$ between arm M and M+1

The Algorithm

- 1. Pull arms randomly and keep confidence intervals, until the gap is discovered at time τ .
- 2. Pull arms randomly for 24τ rounds.
- 3. Run musical chairs.

Analysis.
$$\delta = 1/MT$$

Rounds to stabilize $\lesssim K \log(1/\delta)/\Delta^2 + M \log(M/\delta)/\Delta$

Regret
$$\leq MK \log(MT)/\Delta^2 + M^2 \log(M^2T)/\Delta + 1$$

Invisible collisions: known results

M players, K arms, $\Delta = \text{gap}$ between arm M and M+1, $\mu = \text{known lower bound for all means}$

Instance-dependent upper bounds for regret

1. $(KM/\Delta^2)\log T$

[Lugosi, M'18]

2. $(KM/\Delta + K^2M/\mu)\log T$

[Boursier, Perchet'18]

Best known lower bound: $(K/\Delta) \log T$ [Anantharam, Varaiya, Walrand'87]

Invisible collisions: known results

M players, K arms, $\Delta = \text{gap between arm } M$ and M+1, $\mu = \text{known lower bound for all means}$

Instance-dependent upper bounds for regret

1. $(KM/\Delta^2)\log T$

[Lugosi, M'18]

2. $(KM/\Delta + K^2M/\mu)\log T$

[Boursier, Perchet'18]

Best known lower bound: $(K/\Delta) \log T$ [Anantharam, Varaiya, Walrand'87]

General upper bounds for regret

3. $K^2M\log^2(T)/\mu + KM\sqrt{T\log T}$

[Lugosi, M'18]

4. $K^2M \log T/\mu + K\sqrt{MT \log T}$

[Boursier, Perchet'18]

Best known lower bound (for M=1): \sqrt{KT} [Auer, Cesa-Bianchi, Freund, Schapire'95]

II: Visible Collisions

Visible collisions: known results

M players, K arms, $\Delta = ext{gap}$ between arm M and M+1

Instance-dependent upper bounds for regret

1. $\zeta(M, K, \Delta) \log T$

[Liu and Zhao'10]

2. $(KM/\Delta^2) \log T$

[Rosenski, Shamir, Szlak'16]

3. $(KM/\Delta) \log T$

[Lugosi, M'18]

Best known lower bound: $(K/\Delta) \log T$

[Anantharam, Varaiya, Walrand'87]

Visible collisions: known results

M players, K arms, $\Delta = \mathrm{gap}$ between arm M and M+1

Instance-dependent upper bounds for regret

1. $\zeta(M, K, \Delta) \log T$

[Liu and Zhao'10]

2. $(KM/\Delta^2) \log T$

[Rosenski, Shamir, Szlak'16]

3. $(KM/\Delta) \log T$

[Lugosi, M'18]

Best known lower bound: $(K/\Delta) \log T$ [Anantharam, Varaiya, Walrand'87]

General upper bounds for regret

4. $KM\sqrt{T \log T}$

[Lugosi, M'18]

Best known lower bound (for M=1): \sqrt{KT} [Auer, Cesa-Bianchi, Freund, Schapire'95]

Our algorithm for visible collisions

The single-player case

Epoch-based arm-elimination algorithm

- 1. All arms are alive initially
- 2. In epoch i:
 - 2.1 pull each alive arm 2^i times.
 - 2.2 update confidence intervals.
 - 2.3 if interval of some arm lies below another active arm, kill it.

Our algorithm for visible collisions

The single-player case

Epoch-based arm-elimination algorithm

- 1. All arms are alive initially
- 2. In epoch i:
 - 2.1 pull each alive arm 2^i times.
 - 2.2 update confidence intervals.
 - 2.3 if interval of some arm lies below another active arm, kill it.

Analysis. An arm with gap Δ will be pulled $\lesssim 4 \log(T)/\Delta^2$ times, hence its contribution to regret $\lesssim \min\{4 \log(T)/\Delta, \Delta T\} \le 2\sqrt{T \log T}$,

Regret
$$\lesssim 2K\sqrt{T\log T}$$

Our algorithm for visible collisions

The single-player case

Epoch-based arm-elimination algorithm

- 1. All arms are alive initially
- 2. In epoch i:
 - 2.1 pull each alive arm 2^i times.
 - 2.2 update confidence intervals.
 - 2.3 if interval of some arm lies below another active arm, kill it.

Difficulties for multiplayer case:

- 1. not enough to kill bad arms; must also pull the discovered good arms
- 2. coordinate the explorations

Our algorithm for visible collisions The multiplayer case

Epoch-based arm-elimination algorithm

Each arm is either golden, silver, or dead.

- 1. All arms are silver initially
- 2. In epoch i:
 - 2.1 pull each silver arm 2^i times. (distribute silver arms between players via MC).
 - 2.2 update confidence intervals.
 - 2.3 mark arms as golden or dead as necessary.
 - 2.4 try to occupy new golden arms (using MC).

Our algorithm for visible collisions The multiplayer case

Epoch-based arm-elimination algorithm

Each arm is either golden, silver, or dead.

- 1. All arms are silver initially
- 2. In epoch i:
 - 2.1 pull each silver arm 2^i times. (distribute silver arms between players via MC).
 - 2.2 update confidence intervals.
 - 2.3 mark arms as golden or dead as necessary.
 - 2.4 try to occupy new golden arms (using MC).

Regret $\leq M \min\{K \log(T)/\Delta, K\sqrt{T \log T}\}\$

Visible collisions: known results

M players, K arms, $\Delta = \text{gap}$ between arm M and M+1

Instance-dependent upper bounds for regret

1. $(KM/\Delta^2) \log T$

[Rosenski, Shamir, Szlak'16]

2. $(KM/\Delta) \log T$

[Lugosi, M'18]

Best known lower bound: $(K/\Delta) \log T$

[Anantharam, Varaiya, Walrand'87]

General upper bounds for regret

4. $KM\sqrt{T \log T}$

[Lugosi, M'18]

Best known lower bound (for M=1): \sqrt{KT} [Auer, Cesa-Bianchi, Freund, Schapire'95]

Visible collisions: known results

M players, K arms, $\Delta = \text{gap}$ between arm M and M+1

Instance-dependent upper bounds for regret

1. $(KM/\Delta^2) \log T$

[Rosenski, Shamir, Szlak'16]

2. $(KM/\Delta) \log T$

[Lugosi, M'18]

3. $(KM + K/\Delta) \log T$

[Boursier, Perchet'18]

Best known lower bound: $(K/\Delta) \log T$

[Anantharam, Varaiya, Walrand'87]

General upper bounds for regret

4. $KM\sqrt{T \log T}$

[Lugosi, M'18]

5. $K\sqrt{T\log T}$

[Boursier, Perchet'18]

Best known lower bound (for M=1): \sqrt{KT} [Auer, Cesa-Bianchi, Freund, Schapire'95]

Adversarial case

Known results

Upper bounds for the regret (visible collisions):

1.
$$K^2 T^{2/3}$$
 [Alatur, Levy, Krause'19]

2.
$$K^2 T^{1/2}$$
 for $M=2$ [Bubeck, Li, Peres, Selke'19]

Upper bounds for the regret (invisible collisions):

1.
$$KT^{3/4}$$
 for $M=2$ [Bubeck, Li, Peres, Selke'19]

Open questions

Simpler algorithms? Such as UCB, EXP3?

Better lower bounds?

III: Visible Collisions, Heterogeneous Setting

Multiplayer multi-armed bandits Heterogeneous setting

Distributed online stochastic maximum-weight matching

Multiplayer multi-armed bandits Heterogeneous setting

Distributed online stochastic maximum-weight matching Cooperative game-theoretic situation:

	channel 1	channel 2	channel 3
Player 1	1	0.9	0.2
Player 2	1	0.1	0.3

Known results

M players, K arms, $\Delta = \text{gap}$ between value of best matching and second best value, $\varepsilon > 0$ arbitrary

Instance-dependent upper bounds

1. $\zeta(M, K, \Delta, \varepsilon)(\log T)^{1+\varepsilon}$

[Bistritz and Leshem'19]

- 2. $\zeta(\varepsilon)M^3K(\log T/\Delta)^{1+\varepsilon}$ [Boursier, Perchet, Kaufmann, M'19]
- 3. $M^3 K \log(T)/\Delta$ if the maximum matching is unique.

General upper bounds

4. $KM^2\sqrt{T\log T}$

[Boursier, Perchet, Kaufmann, M'19]

Known results

M players, K arms, $\Delta=$ gap between value of best matching and second best value, $\varepsilon>0$ arbitrary

Instance-dependent upper bounds

1. $\zeta(M, K, \Delta, \varepsilon)(\log T)^{1+\varepsilon}$

- [Bistritz and Leshem'19]
- 2. $\zeta(\varepsilon)M^3K(\log T/\Delta)^{1+\varepsilon}$ [Boursier, Perchet, Kaufmann, M'19]
- 3. $M^3 K \log(T)/\Delta$ if the maximum matching is unique.

General upper bounds

4. $KM^2\sqrt{T\log T}$

[Boursier, Perchet, Kaufmann, M'19]

Conjecture: if collisions are invisible, regret is linear.

Algorithm description

Leader election and implicit communication

Leader election

- 1. Players start by running musical chairs.
- 2. Player occupying smallest chair becomes the leader.
- 3. Players will use their arms to communicate with the leader via collisions.

Each communicated bit adds M to regret.

Algorithm description eliminating edges

- 1. Players explore the edges, get better estimates for the means, communicate to leader.
- 2. Leader eliminates useless edges gradually.

Algorithm outline

- 1. Leader is elected.
- 2. $E \leftarrow \text{all edges}$
- 3. For epoch i = 1, 2, ...,
 - 3.1 Leader: for each $e \in E$, find max matching containing e, send these matchings to players.
 - 3.2 Players: pull each received matching 2^i times, send updated mean estimates to leader.
 - 3.3 Leader: for each $e \in E$, find max matching containing e, using updated estimates. Eliminate e if its gap is large.

Algorithm outline

- 1. Leader is elected.
- 2. $E \leftarrow \text{all edges}$
- 3. For epoch i = 1, 2, ...,
 - 3.1 Leader: for each $e \in E$, find max matching containing e, send these matchings to players.
 - 3.2 Players: pull each received matching 2^i times, send updated mean estimates to leader.
 - 3.3 Leader: for each $e \in E$, find max matching containing e, using updated estimates. Eliminate e if its gap is large.

Analysis (unique maximum matching). A matching with gap Δ is detected to be non-optimal as soon as edge mean accuracy $\leq \Delta/M$, i.e., epoch $\log_2\left(\frac{\log(T)}{(\Delta/M)^2}\right)$.

The matching is pulled $\lesssim \frac{M^2}{\Delta^2} \log(T) \times KM$ times. Regret $\lesssim \min\{KM^3 \log(T)/\Delta, KM\Delta T\} \leq KM^2 \sqrt{T \log T}$.

Analysis Multiple optimal matchings

Number of bits to send in epoch $i = \Theta(i)$, so total communication bits $= \sum_{i=1}^{\log_2(T)} \Theta(i) = \Theta(\log^2 T)$.

Can make this $(\log T)^{1+1/c}$ by epoch sizes 2^{i^c} Final regret bound $\leq 2^{2^{c^c}}MK(M^2\log(T)/\Delta)^{1+1/c}$

Known results

M players, K arms, $\Delta = \text{gap}$ between value of best matching and second best value,

T rounds, $\varepsilon > 0$ arbitrary

Instance-dependent upper bounds

1. $\zeta(M, K, \Delta, \varepsilon)(\log T)^{1+\varepsilon}$

- [Bistritz and Leshem'19]
- 2. $2^{2^{2^{1/\epsilon}}} M^3 K (\log T/\Delta)^{1+\epsilon}$ [Boursier, Perchet, Kaufmann, M'19]
- 3. $M^3 K \log(T)/\Delta$ if the maximum matching is unique.

General upper bounds

4. $KM^2\sqrt{T\log T}$

[Boursier, Perchet, Kaufmann, M'19]

Known results

M players, K arms, $\Delta = \text{gap}$ between value of best matching and second best value,

T rounds, $\varepsilon > 0$ arbitrary

Instance-dependent upper bounds

1. $\zeta(M, K, \Delta, \varepsilon)(\log T)^{1+\varepsilon}$

- [Bistritz and Leshem'19]
- 2. $2^{2^{2^{1/\epsilon}}} M^3 K (\log T/\Delta)^{1+\epsilon}$ [Boursier, Perchet, Kaufmann, M'19]
- 3. $M^3 K \log(T)/\Delta$ if the maximum matching is unique.

General upper bounds

4. $KM^2\sqrt{T \log T}$

[Boursier, Perchet, Kaufmann, M'19]

Question: Regret $O(\log T)$ while multiple optimal matchings?

$K = M = 3, \Delta = 0.35$, unique maximum matching

$K=M=5, \Delta=0.001$, multiple maximum matchings

