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Sections 3.1 and 3.2 ... 3.3 and 3.4 (briefly 3.5) of Survey

Graphs are unweighted unless specified otherwise.

Definitions:

k-labelled graphs, (gluing) product, graph parameter, connection matrix

rank of infinite matrices, rk(f, k), positive semi-definite (PSD)

Reflection positive/Positive semi-definite (PSD) parameter, Finite rank

parameter

Lemma. Let k ≥ 0 and f be a graph parameter. Assume there exists

g1, g2, . . . , gt, h1, h2, . . . , ht so that for every pair G,H of k-labelled graphs,

f(GH) =
t∑
i=1

gi(G)hi(H) .

Then rk(f, k) ≤ t. If gi = hi for i = 1, 2, . . . , t then M(f, k) is PSD.

Proof. Write

M(f,K) = A1 + · · ·+ At

where

[Ai]G,H = gi(G)hi(H)

Then draw Ai and show it has rank 1, so there is vi that spans the row

vector of Ai. Hence {v1, . . . , vt} span the row vector of M(f, k).

Proof of PSD-ness is easy: just assign the vector vG = [g1(G), . . . , gt(G)]

to each graph G.
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parameter rk(f, k) PSD

# edge 2

# simple-edge 2 +
(
k
2

)
# simple subgraphs 2(k

2)

# perfect matchings 2k NO

# independent sets finite YES

# hamiltonian cycles ≤ 2k−1(k − 1)! YES

# q-colourings qk YES

chr(.,x) finite (2006)

independence number finite (2008)

# spanning trees finite

max clique ∞
chromatic number ∞

# eulerian orientations ∞ YES
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e.g. number of edges

e(GH) = e(G)× 1 + 1× e(H)

e.g. number of edges of the simple version of G:

e′(GH) = e′(G) + e′(H)− e′(G ∩H)

= e′(G) + e′(H)−
∑
i<j

1(ij ∈ E(G))1(ij ∈ E(H))

e.g. number of simple subgraphs = 2e
′(G). For X ⊆ {(i, j) : 1 ≤ i <

j ≤ k}, let subg(G,X) be the number of simple subgraphs of G that use

exactly the edges X within the labelled vertices. Then

#subgraphs(GH) =
∑

X∩Y=∅

subg(G,X)subg(H,Y )

e.g. number of perfect matchings pmatch(G) For X ⊆ [k] = {1, 2, . . . , k}
let pmatch(G,X) be the number of matchings in G that cover the unla-

belled vertices and X but none of [k] \X. Then

pmatch(GH) =
∑
X⊆[k]

pmatch(G,X)pmatch(H, [k] \X)

Note that it is not PSD: k = 1 and the submatrix induced by K0 and K1.

e.g. maximum clique size ω(G) consider the submatrix of M(ω, 0) in-

duced by the cliques: it has infinite rank!
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Interesting theorems about the connection matrix

multiplicative graph parameter: f is multiplicative if f(disjointunionGandH) =

f(G)f(H).

Theorem (6.4 in Book). If f is multiplicative, then

rk(f, a+ b) ≥ rk(f, a)rk(f, b)

Theorem (5.62 in Book, Lovasz and Szegedy 2012). If f is multiplicative

and reflection positive defined on loop-free graphs. If r(f, 2) is finite then

so is r(f, k) for k ≥ 2.

Theorem 3.5 (Freedman Lovasz Welsh). If rk(f, k) is finite then f(G)

can be computed in polynomial time for graphs with treewidth ≤ k.

Proof. See Theorem 6.48 in the book

Graph property, Every Property gives a parameter

Theorem (4.22 in Book). Every minor-closed graph property has finite

connection rank.

Theorem (4.27 in Book) (Godlin, Kotek, Makowski 2009). Every prop-

erty of graphs with no parallel edges definable by a monadic second order

formula has finite connection rank.+

BREAK ...
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For any weighted graph H one can define a graph parameter f(G) =

hom(G,H). We show it is PSD and finite rank:

recall:

hom(G,H) =
∑

ψ:V (G)→V (H)

αψhomψ(G,H)

where

αψ =
∏

u∈V (G)

α
αu(G)
ψ(u)(H)

and

homψ(G,H) =
∏

uv∈E(G)

[βψ(u)ψ(v)(H)]βuv(G)

hom(G1G2, H) =
∑

ψ:V (G1G2)→V (H)

αψhomψ(G,H)

=
∑

φ:[k]→V (H)

∑
ψ:V (G1G2)→V (H),ψ extends φ

αψhomψ(G,H)

Any ψ extending φ can be decomposed into ψ1 : V (G1) → V (H) and

ψ2 : V (G2)→ V (H) such that

αψ =
αψ1

αψ2∏
i∈[k] αφ(i)(H)

hence

hom(G1G2, H) =
∑

φ:[k]→V (H)

∑
ψ:V (G1G2)→V (H),ψ extends φ

αψhomψ(G,H)

=
∑

φ:[k]→V (H)

 ∑
ψ1:V (G1)→V (H),ψ1 extends φ

αψ1√
αφ
homψ1

(G1, H)


 ∑
ψ2:V (G2)→V (H),ψ2 extends φ

αψ2√
αφ
homψ2

(G2, H)


=

∑
φ:[k]→V (H)

gφ(G1, H)gφ(G2, H)
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Theorem 3.6 (Freedman Lovasz Schrijver 2004). If graph parameter f

defined on loopless graphs is PSD and rk(f, k) ≤ qk for all k then there

exists weighted H on q vertices such that f(G) = hom(G,H) for all G.

(Proof is in Section 6.2.2 of the book)
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Remarks:

1. Condition (b) can be replaced with another one, related to quantum

graphs!

2. The number of perfect matchings satisfies (b) but not (a) so is not a

homomorphism parameter.

3. The parameter “inverse of the number of simple subgraphs” is posi-

tive semidefinite but its rank grows as 2(k
2) so is not a homomorphism

parameter. However for a simple graph G, 2−e
′(G) = hom(G,K1(1/2)).

(So “loopless” cannot be replaces with “simple” in theorem statement).

4. Not true if we remove “loopless”: the parameter “

2−#loop(G)

” is PSD and has rank 1, but it cannot be represented as a homomor-

phism function. But if we consider two weights for a loop in H: one

for the mappings of loops, and one for the mappings of non-loops, then

the theorem remains valid.

5. extensions to directed graphs, hypergraphs, complex weights, semi-

groups, characterizations of hom(F, .), homomorphisms to randomly

weighted graphs etc. (Section 3.5 of Survey and Section 5.6 of Book)
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Tightness of the bound on rank.

Two reasons it might not be tight: (1) twins: they do not change homo-

morphism numbers but increase |V (H)|k.

(2) automorphisms: if gφ1 = gφ2 then the rank goes down.

Theorem 3.8 (Lovasz’06). If H has no twins and no automorphisms then

rk(hom(., H), k) = |V (H)|k for all k.

In fact for twin-free graphs rk(hom(., H)) equals the number of orbits
of the automorphism group of H on ordered k-tuples of its nodes!
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