
On the push&pull protocol for rumour spreading
Hüseyin Acan (Rutgers), Andrea Collevecchio (Monash), Abbas Mehrabian (UBC), and Nick Wormald (Monash)

The model

1. The ground is a simple connected n-vertex graph.

2. Initially, one vertex knows a rumour.

3. Every informed vertex sends the rumour to a random
neighbour (PUSH);
and every uninformed vertex queries a random neighbour
about the rumour (PULL).

synchronous variant. at each time-step 1, 2, . . . , each vertex
performs an operation (PUSH or PULL)[Demers, Gealy, Greene, Hauser,

Irish, Larson, Manning, Shenker, Sturgis, Swinehart, Terry, Woods’87].

asynchronous variant. at each time-step 1/n, 2/n, . . . , one
random vertex performs an operation [Boyd, Ghosh, Prabhakar, Shah’06].

s(G ) and a(G ): expected time to broadcast the rumour.

Applications

1. Integrity of Replicated databases

2. News propagation in social networks

3. Spread of viruses on the Internet

4. First-passage-percolation with i.i.d. exponential weights

5. Richardson’s model for disease spread

Known results

Graph G s(G ) a(G )

Star 2 ln n + O(1)
Path (4/3)n + O(1) n + O(1)
Double star (1 + o(1))n/4 (1 + o(1))n/4
Complete (1 + o(1)) log3 n ln n + o(1)

[Karp,Schindelhauer,Shenker,Vöcking’00]

Hypercube Θ(ln n) Θ(ln n)
graph [Feige-Peleg-Raghavan-Upfal’90] [Fill,Pemantle’93]

G(n, p) Θ(ln n) (1 + o(1)) ln n
(connected) [Feige-Peleg-Raghavan-Upfal’90] [Panagiotou,Speidel’13]

General O(n ln n) O(n ln n)
[Feige-Peleg-Raghavan-Upfal’90] [Feige-Peleg-Raghavan-Upfal’90]

I Random regular graphs, expander graphs, Barabási-Albert
graphs, Chung-Lu graphs: s(G ), a(G ) = Θ(log n).

ITight upper bounds for s(G ) in terms of expansion profile
[Giakkoupis’11,’14].
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For any connected G on n vertices,

s(G ) < 5n,

ln(n)/5 < a(G ) < 4n,
1

ln n
<

s(G )

a(G )
< 200n2/3 ln n,

and for infinitely many graphs this ratio is Ω̃
(
n1/3
)

.

Remarks

I Giakkoupis, Nazari, Woelfel’16 improved upper bound O
(
n1/2
)

.

IAsymptotic tightness of linear upper bounds for s(G ), a(G ):

s(G ), a(G ) ∼ n/4 s(G ) ∼ 4n/3, a(G ) ∼ n

IAn alternative viewpoint of the asynchronous variant: every
vertex has an independent rate-1 Poisson process, and at
times of process performs an operation (PUSH or PULL).

Proof idea for linear upper bound a(G ) < 4n

Only pull operations are needed!
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Black vertices are informed, white ones are uninformed. We
show inductively the expected remaining time ≤ 2|B | + 4|R |.
Left: there is some boundary vertex v with

degR(v) > degB(v): it may take a lot of time to inform
v , but once it is informed, R � and B �.

Right: otherwise, each boundary vertex has pulling rate
≥ 1/2|B |, and the B boundary vertices work together
“in parallel” and average time for one of them to pull
the rumour is 2.

Example with a(G )� s(G )

...

... . . . ...

n1/3 diamonds, each consisting of n2/3 paths.

a(G ) ≤ n1/3 × 5√
n2/3

+ ln n� 2n1/3 ≤ s(G ),

using a birthday paradox argument.

Proof idea for a(G ) < s(G )× ln n

Consider an arbitrary calling sequence:
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Using a coupon collector argument, the average length of each
block is n ln n, and each step needs time 1/n.

Experimental comparison of two variants

Plots from: Doerr, Fouz, and Friedrich. MedAlg 2012.


