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Game De�nition

De�nition (The Game of Cops and Robber)

Let G be a graph and s be a positive integer.

There is a set of cops and a robber.

In the beginning,

First, each cop chooses a starting vertex.

Then, the robber chooses a starting vertex.

In each round,

First, each cop chooses to stay or go to an adjacent vertex.

Then, the robber chooses to stay, or move along a cop-free

path of length ≤ s.

The cops capture the robber if, at some moment, a cop is at the

same vertex with the robber.

Think of s as the speed of the robber.
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Some Remarks/Assumptions About the Game

1 This is a perfect-information game: the players see each other.

2 More than one cops can be at the same vertex.

3 The robber cannot jump over a cop.

4 The moves are deterministic (no randomness).

5 The graph is simple and connected.
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fs(n)

Interested in: graphs that require lots of cops (not Kn or Pn!)

De�nition

Let fs(n) denote the minimum number c such that it is guaranteed

that c cops can capture the robber in every connected graph on n

vertices.
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Meyniel's Conjecture

Meyniel's Conjecture, 1987

f1(n) = O(
√
n)

k
√
n ≤ f1(n) ≤ n2−(1−o(1))

√
log2 n = n1−o(1)

[Lu and Peng'09, Scott and Sudakov'10]

In general, let α = 1+ 1/s. Then

kns−3/s−2 ≤ fs(n) ≤ nα−(1−o(1))
√

logα n

[Frieze, Krivelevich, Loh'11]

Today we will prove kns/s+1 ≤ fs(n)
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Controlling a Path

De�nition

The cops control a vertex if there is a cop at that vertex or at an

adjacent vertex.

The cops control a path if they control some vertex of it.
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Proof of the Main Lemma

Lemma (The Main Lemma)

Let G be d-regular with girth > 2s + 2. Then Ω(d s) cops are

needed to capture the robber in G.

Proof.

Vertex r is safe if ∃X ⊆ V , |X | = (d − 1)s/2, such that

∀x ∈ X , ∃(r , x)-path of length s not controlled by the cops:

r

X
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This completes the proof, because

number of cops ≥
|X |

(d−1)s

2

(s + 1)d s
= Ω(d s)
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Insu�ciency of the Main Lemma

Lemma (The Main Lemma)

Let G be d-regular with girth > 2s + 2. Then Ω(d s) cops are

needed to capture the robber in G.

Conjecture [Bollobas'78]

For all s and in�nitely many n there is an n
1

s+1 -regular graph with

girth > 2s + 2.

If true, the conjecture implies fs(G ) = Ω
(
ns/s+1

)
.

Only proved to be true for s = 2, 4 !
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A Stronger Version of the Main Lemma

Lemma (A Stronger Version of the Main Lemma)

Let G be d-regular bipartite graph with diameter larger than s,

such that

1 If u and v are vertices of distance ≤ s + 1, there are O(1)

distinct shortest (u, v)-paths.

2 For every vertex u and subset A of vertices having size O(1),

there exist Ω(d s) vertices x of distance s from u, such that

any shortest (u, x)-path avoids A.

Then Ω(d s) cops are needed to capture the robber in G.

Proof.

Similar to the proof of the Main Lemma.
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The Cayley Graph

Let d := 2r ,

x1, . . . , xd : d elements of GF (d) as 0,1-column vectors of length r ,

H =


1 1 . . . 1

x1 x2 . . . xd
x31 x32 . . . x3

d

...
...

. . .
...

x2s+1
1 x2s+1

2 . . . x2s+1
d


1+r(s+1)×d

Key property: Every 2s + 2 columns of H are independent.

G : the graph with vertex set Z1+r(s+1)
2 ,

v1, v2 adjacent if v1 − v2 is a column of H.

G is d -regular, has 2d s+1 vertices.
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The Cayley Graph

G : the graph with vertex set Z1+r(s+1)
2 ,

v1, v2 adjacent if v1 − v2 is a column of H.

Let x , y be vertices in G of distance s + 1:

x − y = a1 + a2 + · · ·+ as+1

Another shortest path between x and y :

x − y = a ′1 + a ′2 + · · ·+ a ′s+1

Then

a1 + a2 + · · ·+ as+1 + a ′1 + a ′2 + · · ·+ a ′s+1 = 0

So {a ′1, a
′
2, . . . , a

′
s+1} is a permutation of {a1, a2, . . . , as+1}.

There are (s + 1)! = O(1) shortest (x , y)-paths.
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A Generalization of Meyniel's Conjecture

Theorem (Alon, M'11)

For all s,

fs(n) = Ω
(
ns/s+1

)
Conjecture [M'11]

For all s,

fs(n) = O
(
ns/s+1

)
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Known Results
for a robber with speed n

Write c∞(G ) for the cop number of G if the robber has speed n.

Computing c∞(G ) is NP-hard.

[Fomin, Golovach, Kratochvíl'08]

Computing c∞(G ) is in P if G is an interval graph.

[Gavenciak'11]

For every n, there exists G with c∞(G ) = Θ (n).

[Frieze, Krivelevich, Loh'11]
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New Results
for a robber with speed n

Theorem (M'11+)

tw(G ) + 1

∆+ 1
≤ c∞(G ) ≤ tw(G ) + 1

G planar ⇒ c∞(G ) = Θ (tw(G ))

G interval ⇒ c∞(G ) = O(
√
n)

∃ chordal G s.t. c∞(G ) = Ω

(
n

log n

)
np ≥ 5 ln n ⇒ k1

p
≤c∞(G(n, p)) ≤ k2 ln(np)

p
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