Cops and Robber Game with a Fast Robber on Expander Graphs and Random Graphs

Abbas Mehrabian amehrabi@uwaterloo.ca

University of Waterloo

May 6th, 2011

Game Definition

Definition (The Game of Cops and Robber)

- The game is played on a graph.
- There is a set of cops and a robber.
- In the beginning,
 - First, each cop chooses a starting vertex.
 - Then, the robber chooses a starting vertex.
- In each round,
 - First, each cop chooses to stay or go to an adjacent vertex.
 - Then, the robber chooses to stay, or move along a cop-free path.
- The cops capture the robber if, at some moment, a cop is at the same vertex with the robber.

Some Remarks

- **1** This is a perfect-information game: the players see each other.
- Ø More than one cops can be at the same vertex.
- The robber cannot jump over a cop.
- The moves are deterministic (no randomness).

Cop Number

Definition

The minimum number of cops that are needed to capture the (clever) robber is denoted by $c_{\infty}(G)$, and is called the cop number of G.

Example

- If G is the complete graph, then $c_{\infty}(G) = 1$.
- If G is a cycle with > 3 vertices, then $c_{\infty}(G) = 2$.
- If G is the $m \times m$ grid, then $c_{\infty}(G) = m$.

(日) (同) (三) (

Cop Number

Definition

The minimum number of cops that are needed to capture the (clever) robber is denoted by $c_{\infty}(G)$, and is called the cop number of G.

Example

- If G is the complete graph, then $c_{\infty}(G) = 1$.
- If G is a cycle with > 3 vertices, then $c_{\infty}(G) = 2$.
- If G is the $m \times m$ grid, then $c_{\infty}(G) = m$.

4 🗇 🕨 4 🖻 🕨 4

Known Results

• Computing $c_{\infty}(G)$ is NP-hard.

[Fomin, Golovach, Kratochvíl'08]

b) (1) (2) (3)

• For every *n*, there exists a connected graph *G* on *n* vertices with $c_{\infty}(G) = \Theta(n)$. [Frieze, Krivelevich, Loh'11]

Today:

- Bounds for $c_{\infty}(G)$ when G is an expander graph
- Results in bounds for the cop number of random graphs

Known Results

• Computing $c_{\infty}(G)$ is NP-hard.

[Fomin, Golovach, Kratochvíl'08]

• For every *n*, there exists a connected graph *G* on *n* vertices with $c_{\infty}(G) = \Theta(n)$. [Frieze, Krivelevich, Loh'11]

Today:

- Bounds for $c_\infty(G)$ when G is an expander graph
- Results in bounds for the cop number of random graphs

Notation

G the graph of the game, simple and connected n the number of vertices of G δ, Δ the minimum, maximum degree of G log the natural logarithm

The (Closed) Neighbourhood of a Subset

Definition

Let $S \subseteq V(G)$. The (closed) neighbourhood of S, written $\overline{N}(S)$, is the set of vertices that are in S or have a neighbour in S.

The (Closed) Neighbourhood of a Subset

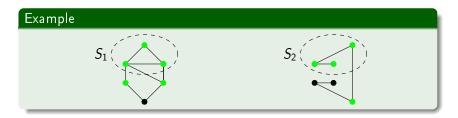
Definition

Let $S \subseteq V(G)$. The (closed) neighbourhood of S, written $\overline{N}(S)$, is the set of vertices that are in S or have a neighbour in S.

The (Closed) Neighbourhood of a Subset

Definition

Let $S \subseteq V(G)$. The (closed) neighbourhood of S, written $\overline{N}(S)$, is the set of vertices that are in S or have a neighbour in S.



Lemma

Assume that for every subset S of vertices of size $\leq m$, $G - \overline{N}(S)$ has a connected component of size > n/2. Then $c_{\infty}(G) > m$.

Proof.

Lemma

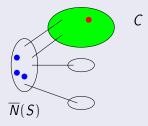
Assume that for every subset S of vertices of size $\leq m$, $G - \overline{N}(S)$ has a connected component of size > n/2. Then $c_{\infty}(G) > m$.

Proof.

Lemma

Assume that for every subset S of vertices of size $\leq m$, $G - \overline{N}(S)$ has a connected component of size > n/2. Then $c_{\infty}(G) > m$.

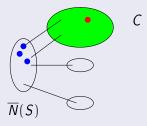
Proof.



Lemma

Assume that for every subset S of vertices of size $\leq m$, $G - \overline{N}(S)$ has a connected component of size > n/2. Then $c_{\infty}(G) > m$.

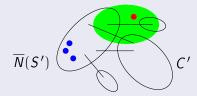
Proof.



Lemma

Assume that for every subset S of vertices of size $\leq m$, $G - \overline{N}(S)$ has a connected component of size > n/2. Then $c_{\infty}(G) > m$.

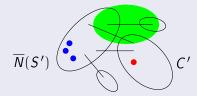
Proof.



Lemma

Assume that for every subset S of vertices of size $\leq m$, $G - \overline{N}(S)$ has a connected component of size > n/2. Then $c_{\infty}(G) > m$.

Proof.



The Large Component Lemma

Lemma

Assume that for every subset S of vertices of size $\leq m$, $G - \overline{N}(S)$ has a connected component of size > n/2. Then $c_{\infty}(G) > m$.

In other words,

Lemma

Let $c = c_{\infty}(G)$. There exists a subset S of size $\leq c$ such that $G - \overline{N}(S)$ has no component of size > n/2.

Vertex Expansion

Definition

Let G be a graph. The vertex expansion of G, t(G), is the following quantity:

$$\iota(G) = \min_{|S| \le n/2} \frac{|\overline{N}(S) \setminus S|}{|S|}.$$

Example

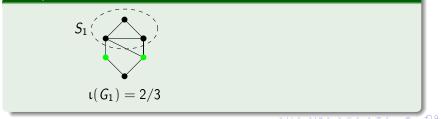
Vertex Expansion

Definition

Let G be a graph. The vertex expansion of G, t(G), is the following quantity:

$$\iota(G) = \min_{|S| \le n/2} \frac{|\overline{N}(S) \setminus S|}{|S|}.$$

Example



Vertex Expansion

Definition

Let G be a graph. The vertex expansion of G, t(G), is the following quantity:

$$\iota(G) = \min_{|S| \le n/2} \frac{|\overline{N}(S) \setminus S|}{|S|}.$$

Example

Abbas Mehrabian Cops and Robber Game with a Fast Robber

Lower Bound for Expander Graphs

Theorem

$$c_{\infty}(G) \geq rac{\iota n}{4(\Delta+1)}$$

Proof.

Let $c = c_{\infty}(G)$. There exists a subset S of size $\leq c$ such that $G - \overline{N}(S)$ has no component of size > n/2. Clearly $\overline{N}(S) \leq c(\Delta + 1)$. Let C_1, \ldots, C_m be the components of $G - \overline{N}(S)$.

Lower Bound for Expander Graphs

Theorem

$$c_{\infty}(G) \geq rac{\ln}{4(\Delta+1)}$$

Proof.

Let $c = c_{\infty}(G)$. There exists a subset S of size $\leq c$ such that $G - \overline{N}(S)$ has no component of size > n/2. Clearly $\overline{N}(S) \leq c(\Delta + 1)$. Let C_1, \ldots, C_m be the components of $G - \overline{N}(S)$.

Lower Bound for Expander Graphs

Theorem

$$c_{\infty}(G) \geq rac{\ln}{4(\Delta+1)}$$

Proof.

Let $c = c_{\infty}(G)$. There exists a subset S of size $\leq c$ such that $G - \overline{N}(S)$ has no component of size > n/2. Clearly $\overline{N}(S) \leq c(\Delta + 1)$. Let C_1, \ldots, C_m be the components of $G - \overline{N}(S)$.

Lower Bound for Expander Graphs

Theorem

$$c_{\infty}(G) \geq rac{\ln}{4(\Delta+1)}$$

Proof.

Let $c = c_{\infty}(G)$. There exists a subset S of size $\leq c$ such that $G - \overline{N}(S)$ has no component of size > n/2. Clearly $\overline{N}(S) \leq c(\Delta + 1)$. Let C_1, \ldots, C_m be the components of $G - \overline{N}(S)$. If $|C_1| + \cdots + |C_m| < n/4$, then $\overline{N}(S) \geq 3n/4$, so

$$c(\Delta+1) \ge \overline{N}(S) \ge \frac{3n}{4} > \frac{\ln}{4}$$

Lower Bound for Expander Graphs

Theorem

$$c_{\infty}(G) \geq rac{\ln 1}{4(\Delta+1)}$$

Proof.

Let $c = c_{\infty}(G)$. There exists a subset S of size $\leq c$ such that $G - \overline{N}(S)$ has no component of size > n/2. Clearly $\overline{N}(S) \leq c(\Delta + 1)$. Let C_1, \ldots, C_m be the components of $G - \overline{N}(S)$. If $|C_1| + \cdots + |C_m| \geq n/4$, as each C_i has size $\leq n/2$, one can pick some of the C_i 's such that their union U has $n/4 \leq |U| \leq n/2$.

Lower Bound for Expander Graphs

Theorem

$$c_{\infty}(G) \geq rac{\iota n}{4(\Delta+1)}$$

Proof.

Let $c = c_{\infty}(G)$. There exists a subset S of size $\leq c$ such that $G - \overline{N}(S)$ has no component of size > n/2. Clearly $\overline{N}(S) \leq c(\Delta + 1)$. Let C_1, \ldots, C_m be the components of $G - \overline{N}(S)$. If $|C_1| + \cdots + |C_m| \geq n/4$, as each C_i has size $\leq n/2$, one can pick some of the C_i 's such that their union U has $n/4 \leq |U| \leq n/2$. Set U has at least $\iota|U|$ neighbours outside, so

$$c(\Delta+1) \ge |\overline{N}(S)| \ge \iota |U| \ge \iota n/4$$
 \Box

The Erdös-Rényi Random Graph

Definition

 $\mathcal{G}(n,p)$ is a random graph on a set of vertices of size *n*, in which each edge appears in $\mathcal{G}(n,p)$ independently and with probability *p*. For a graph property *A*, we say $\mathcal{G}(n,p)$ asymptotically almost surely (a.a.s.) satisfies *A*, if we have

 $\lim_{n\to\infty} \Pr\left[\mathcal{G}(n,p(n)) \text{ satisfies } A\right] = 1$

Vertex Expansion of Random Graphs

Theorem

Let 0 < b < 1 be fixed, and t, k be constants such that

$$t > \frac{1 + \log 2}{1 - b} - \log(1 - b), \qquad k > \frac{2t}{1 - e^{-t}}.$$

If $np \ge k \log n$ then a.a.s. $\iota(\mathcal{G}(n, p)) \ge b$.

Proof.

Two pages of calculations and using Chernoff bounds ...

Corollary

If $np \ge 4.2 \log n$, then a.a.s. $\iota(\mathcal{G}(n, p)) \ge 10^{-3}$.

Abbas Mehrabian Cops and Robber Game with a Fast Robber

Vertex Expansion of Random Graphs

Theorem

Let 0 < b < 1 be fixed, and t, k be constants such that

$$t > \frac{1 + \log 2}{1 - b} - \log(1 - b), \qquad k > \frac{2t}{1 - e^{-t}}$$

If
$$np \ge k \log n$$
 then a.a.s. $\iota(\mathcal{G}(n, p)) \ge b$.

Proof.

Two pages of calculations and using Chernoff bounds ...

Corollary

If $np \ge 4.2 \log n$, then a.a.s. $\iota(\mathcal{G}(n, p)) \ge 10^{-3}$.

Lower Bounds for Random Graphs

Theorem

$$c_{\infty}(G) \geq rac{\ln n}{4(\Delta+1)}$$

Theorem

If
$$np \ge 4.2 \log n$$
, then a.a.s. $\iota(\mathcal{G}(n, p)) \ge 10^{-3}$.

Corollary

If
$$np \ge 4.2 \log n$$
, then a.a.s. $c_{\infty}(\mathcal{G}(n,p)) = \Omega\left(\frac{1}{p}\right)$.

э

Lower Bounds for Random Graphs

Theorem

$$c_{\infty}(G) \geq \frac{\ln n}{4(\Delta+1)}$$

Theorem

If $np \ge 4.2 \log n$, then a.a.s. $\iota(\mathcal{G}(n, p)) \ge 10^{-3}$.

Corollary

If
$$np \ge 4.2 \log n$$
, then a.a.s. $c_{\infty}(\mathcal{G}(n,p)) = \Omega\left(\frac{1}{p}\right)$.

イロト イポト イヨト イヨト

э

Lower Bounds for Random Graphs

Theorem

$$c_{\infty}(G) \geq \frac{\ln n}{4(\Delta+1)}$$

Theorem

If
$$np \ge 4.2 \log n$$
, then a.a.s. $\iota(\mathcal{G}(n, p)) \ge 10^{-3}$.

Corollary

If
$$np \ge 4.2 \log n$$
, then a.a.s. $c_{\infty}(\mathcal{G}(n,p)) = \Omega\left(\frac{1}{p}\right)$.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

An Obvious Upper Bound For The Cop Number

Definition

Set $X \subseteq V(G)$ is a dominating set if every vertex is either in X or adjacent to a vertex in X. The domination number of graph G is the minimum size of a dominating set of G.

Proposition

The cop number \leq the domination number.

Proof.

The cops start at a dominating set. They will capture the robber in their first move. $\hfill\square$

(日) (同) (三) (

An Obvious Upper Bound For The Cop Number

Definition

Set $X \subseteq V(G)$ is a dominating set if every vertex is either in X or adjacent to a vertex in X. The domination number of graph G is the minimum size of a dominating set of G.

Proposition

The cop number \leq the domination number.

Proof.

The cops start at a dominating set. They will capture the robber in their first move. $\hfill \square$

Upper Bounds for Random Graphs

Corollary (from previous slides)

If
$$np \ge 4.2 \log n$$
, then a.a.s. $c_{\infty}(\mathcal{G}(n,p)) = \Omega\left(\frac{1}{p}\right)$.

Theorem (Alon, Spencer'92)

The domination number of any graph G is $O(n \log \delta/\delta)$.

Corollary

If $np \ge 4.2 \log n$, then a.a.s.

$$k_1\left(\frac{1}{p}\right) \le c_{\infty}(\mathcal{G}(n,p)) \le k_2\left(\frac{\log(np)}{p}\right)$$

(日) (同) (三) (

Upper Bounds for Random Graphs

Corollary (from previous slides)

If
$$np \ge 4.2 \log n$$
, then a.a.s. $c_{\infty}(\mathcal{G}(n,p)) = \Omega\left(\frac{1}{p}\right)$.

Theorem (Alon, Spencer'92)

The domination number of any graph G is $O(n\log \delta/\delta).$

Corollary

If $np \ge 4.2 \log n$, then a.a.s.

$$k_1\left(\frac{1}{p}\right) \le c_{\infty}(\mathcal{G}(n,p)) \le k_2\left(\frac{\log(np)}{p}\right)$$

▲ 同 ▶ ▲ 国 ▶ ▲

Upper Bounds for Random Graphs

Corollary (from previous slides)

If
$$np \ge 4.2 \log n$$
, then a.a.s. $c_{\infty}(\mathcal{G}(n,p)) = \Omega\left(\frac{1}{p}\right)$.

Theorem (Alon, Spencer'92)

The domination number of any graph G is $O(n\log \delta/\delta).$

Corollary

If $np \ge 4.2 \log n$, then a.a.s.

$$k_1\left(rac{1}{p}
ight) \leq c_{\infty}(\mathcal{G}(n,p)) \leq k_2\left(rac{\log(np)}{p}
ight)$$

Tighter Bounds for Denser Random Graphs

Theorem (Bonato, Prałat, and Wang'07)

Consider the original game. If $np = n^{\alpha+o(1)}$, where $1/2 < \alpha < 1$, then a.a.s $\Omega(\log n/p)$ cops are needed.

Corollary

If
$$np = n^{\alpha + o(1)}$$
, where $1/2 < \alpha < 1$, then a.a.s

$$c_{\infty}(\mathcal{G}(n,p)) = \Theta\left(\frac{\log n}{p}\right)$$

Proof.

Use the result on the domination number for upper bounds, and the result for the "slow robber" version for lower bounds.

・白・ ・ コ・ ・ ヨ・

Tighter Bounds for Denser Random Graphs

Theorem (Bonato, Prałat, and Wang'07)

Consider the original game. If $np = n^{\alpha+o(1)}$, where $1/2 < \alpha < 1$, then a.a.s $\Omega(\log n/p)$ cops are needed.

Corollary

If
$$np = n^{\alpha + o(1)}$$
, where $1/2 < \alpha < 1$, then a.a.s

$$c_{\infty}(\mathcal{G}(n,p)) = \Theta\left(\frac{\log n}{p}\right)$$

Proof.

Use the result on the domination number for upper bounds, and the result for the "slow robber" version for lower bounds.

・ コート ・ コート

Tighter Bounds for Denser Random Graphs

Theorem (Bonato, Prałat, and Wang'07)

Consider the original game. If $np = n^{\alpha+o(1)}$, where $1/2 < \alpha < 1$, then a.a.s $\Omega(\log n/p)$ cops are needed.

Corollary

If
$$np = n^{\alpha + o(1)}$$
, where $1/2 < \alpha < 1$, then a.a.s

$$c_{\infty}(\mathcal{G}(n,p)) = \Theta\left(\frac{\log n}{p}\right)$$

Proof.

Use the result on the domination number for upper bounds, and the result for the "slow robber" version for lower bounds.

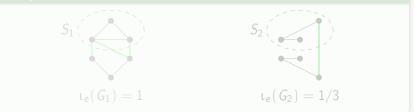
Edge Expansion

Definition

For $S \subseteq V(G)$, let ∂S denote the set of edges with exactly one endpoint in S. Then the edge expansion of G, $\iota_e(G)$, is

$$\iota_e(G) = \min_{|S| \le n/2} \frac{|\partial S|}{|S|}$$

Example



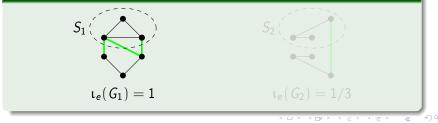
Edge Expansion

Definition

For $S \subseteq V(G)$, let ∂S denote the set of edges with exactly one endpoint in S. Then the edge expansion of G, $\iota_e(G)$, is

$$\iota_e(G) = \min_{|S| \le n/2} \frac{|\partial S|}{|S|}$$

Example



Abbas Mehrabian Cops and Robber Game with a Fast Robber

Edge Expansion

Definition

For $S \subseteq V(G)$, let ∂S denote the set of edges with exactly one endpoint in S. Then the edge expansion of G, $\iota_e(G)$, is

$$\iota_e(G) = \min_{|S| \le n/2} \frac{|\partial S|}{|S|}$$

Example

Abbas Mehrabian Cops and Robber Game with a Fast Robber

Asymptotic Cop Number of Random Regular Graphs

Theorem

$$c_{\infty}(G) \geq \frac{\iota_e n}{2\Delta^2}$$

Corollary

Fix $d \ge 3$. A.a.s. a random d-regular labelled graph G on n vertices has $c_{\infty}(G) = \Theta(n)$.

Proof.

A.a.s.
$$\iota_e(G) \ge d/2 - \sqrt{d \log 2} - o(1)$$
 [Bollobás'88], so
 $c_{\infty}(G) \ge \frac{d - 2\sqrt{d \log 2}}{4d^2} n - o(n)$

Asymptotic Cop Number of Random Regular Graphs

Theorem

$$c_{\infty}(G) \geq \frac{\iota_e n}{2\Delta^2}$$

Corollary

Fix $d \ge 3$. A.a.s. a random d-regular labelled graph G on n vertices has $c_{\infty}(G) = \Theta(n)$.

Proof.

A.a.s.
$$\iota_e(G) \ge d/2 - \sqrt{d \log 2} - o(1)$$
 [Bollobás'88], so
 $c_{\infty}(G) \ge \frac{d - 2\sqrt{d \log 2}}{4d^2} n - o(n)$

Asymptotic Cop Number of Random Regular Graphs

Theorem

$$c_{\infty}(G) \geq \frac{\iota_e n}{2\Delta^2}$$

Corollary

Fix $d \ge 3$. A.a.s. a random d-regular labelled graph G on n vertices has $c_{\infty}(G) = \Theta(n)$.

Proof.

A.a.s.
$$\iota_e(G) \ge d/2 - \sqrt{d \log 2} - o(1)$$
 [Bollobás'88], so
 $c_{\infty}(G) \ge \frac{d - 2\sqrt{d \log 2}}{4d^2} n - o(n)$

Open Problem

When $np \ge 4.2 \log n$, we proved that a.a.s.

$$\frac{k_1}{p} \le c_{\infty}(\mathcal{G}(n,p)) \le \frac{k_2 \log(np)}{p}$$

What is the correct value?

Thank You!

Any Questions?

Abbas Mehrabian Cops and Robber Game with a Fast Robber

æ

э