Quantum Query Complexity of Some Graph Problems
Diirr, Heiligman, Hgyer, Mhalla, SIAM J. Computing 2006.

Quantum algorithms, basic graph problems (query complexity),
two representations:

Matrix model: algorithm is given n there is a black box that
given ¢ and 7, returns whether vertices ¢ and j are adjacent.

Array model: algorithm is given n and dy, . ..,d,. there is a black

box that given ¢ and j, returns the j-th neighbour of vertex i.
representation | matrix | array

non-quantum | O(n?) | O(n?)

quantum O(ny/n) | O(n)

Randomized polynomial algorithms with bounded error proba-
bility

Other problems: strong connectivity, minimum spanning trees,

single source shortest paths

Main tool. Amplitude amplification, a generalization of
Grover’s search algorithm: Consider a function F' : {1,...,n} —
{0,1}. Let A ={z: F(z) = 1}, and a = |A|. There is a quantum
algorithm that given black-box access to F,

1. If a > 0, outputs a random element in A asking an expected
number of 0.94/n/a queries.

2. If a = 0, may run forever.

Algorithm for matrix model. Start with n trees: in
each iteration search for an edge that connects two trees.

Running time analysis if graph is connected: when there are

k > 1 trees, it takes on average 0.9\/% = O(4/n?/k) queries
to reduce the number of trees by 1. Total expected running time is

thus of order

S V=3 L o< [T L ayag < v
Vk 1 VT

Algorithm for array model.

Phase 1: Partition the vertex set into pieces (sets inducing con-
nected subgraphs).

Phase 2: Merge the pieces iteratively: in every iteration, choose
a piece with minimum total degree, and find an outgoing edge; then
merge two pieces using that edge.

Lemma 1. Using O(n) queries we can partition the vertices into
several pieces such that for each piece C, its total degree t(C') < |C?.

Lemma 2. Suppose that after Phase 1 the pieces have total degrees
t1,...,tg. If graph is connected, then the expected query complexity
of (2) is

O(Vti+Vta+ -+ Vtx) =0(n)

Thus we find an algorithm with expected query complexity O(n)
for connected graphs. To get a polynomial time algorithm, we run
it and if it did not succeed after three times the expected time, stop
it and output DISCONNECTED.

Lemma 1. Using O(n) queries we can partition the vertices into
several pieces such that for each piece C, its total degree t(C) < |C|?.

Proof. Initially there is no piece, and all vertices are uncovered.
(*) while there exist uncovered vertices,
u = an uncovered vertex with maximum degree d.
Go through neighbours of u in order, inserting them into a buffer B
If a neighbour v is encountered that is covered, add v U B to the
piece containing v, and go to (*)
Otherwise, i.e. if all neighbours of u are uncovered, v and its neigh-
bours form a new piece; go to (*)

Case 2: a newly built piece has d 4+ 1 vertices and total degree
<d(d+1) < (d+1)%

Case 1: wU B is added to piece P: let b = |B|. Note d < |P)|.

t(PUuUB) < t(P)+d+ |B|d
<|PP+|P|(b+1)
< (|P|+b+1)
= (|JPUwU BJ|)? O

Lemma 2. Suppose that after Phase 1 the pieces have total degrees
ty,...,t,. If graph is connected, then the expected query complexity
of (2) is

O (Vti+ Vit + - +Vte) = O(n)

Proof. (Define the notion of a half-edge.) In a given iteration, if P is
the piece with minimum ¢(P), that iteration takes 0.91/¢(P)/d(P) <
a\/ﬁ queries on average. We distribute this cost among the half-
edges of P, so each half-edge pays < «/ \/m)

Fix a half-edge e, and assume during Phase 2 it is contained in
pieces with total degrees t(FPy) = mg < my < Then m;;; > 2m;
for all 7, hence e pays

o0 a o0
S S 2 7,/2
YL s
Hence, for an initial piece Py, the half-edges of Py pay < t(Fp)

dan/t(Fy) in total O

