
Quantum Query Complexity of Some Graph Problems

Dürr, Heiligman, Høyer, Mhalla, SIAM J. Computing 2006.

Quantum algorithms, basic graph problems (query complexity),

two representations:

Matrix model: algorithm is given n there is a black box that

given i and j, returns whether vertices i and j are adjacent.

Array model: algorithm is given n and d1, . . . , dn. there is a black

box that given i and j, returns the j-th neighbour of vertex i.

representation matrix array

non-quantum Θ(n2) Θ(n2)

quantum Θ(n
√
n) Θ(n)

Randomized polynomial algorithms with bounded error proba-

bility

Other problems: strong connectivity, minimum spanning trees,

single source shortest paths

1

Main tool. Amplitude amplification, a generalization of

Grover’s search algorithm: Consider a function F : {1, . . . , n} →
{0, 1}. Let A = {x : F (x) = 1}, and a = |A|. There is a quantum

algorithm that given black-box access to F ,

1. If a > 0, outputs a random element in A asking an expected

number of 0.9
√
n/a queries.

2. If a = 0, may run forever.

Algorithm for matrix model. Start with n trees: in

each iteration search for an edge that connects two trees.

Running time analysis if graph is connected: when there are

k > 1 trees, it takes on average 0.9
√

n(n−1)
k−1 = O(

√
n2/k) queries

to reduce the number of trees by 1. Total expected running time is

thus of order

n∑
k=2

√
n2/k = n

n∑
k=2

1√
k
≤ n

∫ n

x=1

1√
x

= n2
√
x|n1 = n

√
n

2

Algorithm for array model.
Phase 1: Partition the vertex set into pieces (sets inducing con-

nected subgraphs).

Phase 2: Merge the pieces iteratively: in every iteration, choose

a piece with minimum total degree, and find an outgoing edge; then

merge two pieces using that edge.

Lemma 1. Using O(n) queries we can partition the vertices into

several pieces such that for each piece C, its total degree t(C) < |C|2.

Lemma 2. Suppose that after Phase 1 the pieces have total degrees

t1, . . . , tk. If graph is connected, then the expected query complexity

of (2) is

O
(√

t1 +
√
t2 + · · ·+

√
tk
)

= O(n)

Thus we find an algorithm with expected query complexity O(n)

for connected graphs. To get a polynomial time algorithm, we run

it and if it did not succeed after three times the expected time, stop

it and output DISCONNECTED.

3

Lemma 1. Using O(n) queries we can partition the vertices into

several pieces such that for each piece C, its total degree t(C) < |C|2.

Proof. Initially there is no piece, and all vertices are uncovered.

(*) while there exist uncovered vertices,

u = an uncovered vertex with maximum degree d.

Go through neighbours of u in order, inserting them into a buffer B

If a neighbour v is encountered that is covered, add u ∪ B to the

piece containing v, and go to (*)

Otherwise, i.e. if all neighbours of u are uncovered, u and its neigh-

bours form a new piece; go to (*)

Case 2: a newly built piece has d + 1 vertices and total degree

≤ d(d+ 1) < (d+ 1)2.

Case 1: u ∪B is added to piece P : let b = |B|. Note d ≤ |P |.

t(P ∪ u ∪B) ≤ t(P) + d+ |B|d
< |P |2 + |P |(b+ 1)

< (|P |+ b+ 1)2

= (|P ∪ u ∪B|)2

4

Lemma 2. Suppose that after Phase 1 the pieces have total degrees

t1, . . . , tk. If graph is connected, then the expected query complexity

of (2) is

O
(√

t1 +
√
t2 + · · ·+

√
tk
)

= O(n)

Proof. (Define the notion of a half-edge.) In a given iteration, if P is

the piece with minimum t(P), that iteration takes 0.9
√
t(P)/δ(P) ≤

α
√
t(P) queries on average. We distribute this cost among the half-

edges of P , so each half-edge pays ≤ α/
√
t(P).

Fix a half-edge e, and assume during Phase 2 it is contained in

pieces with total degrees t(P0) = m0 < m1 < Then mi+1 ≥ 2mi

for all i, hence e pays

≤
∞∑
i=0

α
√
mi

≤
∞∑
i=0

α√
2im0

=
α
√
m0

∞∑
i=0

2−i/2 ≤ 4α
√
m0

Hence, for an initial piece P0, the half-edges of P0 pay≤ t(P0)
4α√
t(P0)

=

4α
√
t(P0) in total

5

