This is a summary of the talk I gave on November 9th of 2011 in Uni-
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Problem (Small Set Expansion). Given edge-weighted graph G and
p € (0,0.5], find
OPT := min @
15|<pn ||

An O(logn) approximation can be derived using Réacke’08.

The authors prove the following theorem in the paper, which we will not
prove, but shall use a corollary of it.
Theorem 1. For every fixed € > 0 there is an algorithm that outputs a set
S of size < (1 + €)pn with edge expansion O ( lognlog(l/p)) OPT.

Remarks.

1. This algorithm and all following algorithms are randomized, have poly-
nomial expected running time, and produce the desired output with

high probability.

2. The algorithm uses an SDP relaxation, and uses “orthogonal sepa-
rators,” (introduced by Chlamtac, Makarychev, Makarychev’06) for

rounding it.

3. A more general theorem is proved, in which the vertices are also

weighted, and there is a lower bound on the weight of the set S.

4. For graphs excluding a fixed minor/having fixed genus, the approxi-
mation factor is improved to O(1). The proof uses an LP relaxation
and a new notion called “LP separators,” and the authors build these

using “separating decompositions” of graph metrics.

Problem (Weighted p-Unbalanced Cut). Given graph G, vertex weights
y, edge weights w and p € (0, 1] the goal is to find S minimizing §(S) satis-
fying

y(S) = py(V)  and  [S]<pn

Corollary 1. For every fixed ¢ > 0 there is an algorithm that finds
set S with |S| < Bpn, y(S) > py(V)/y and §(S) < a OPT, where a =

O (\/lognlog(l/p)), B=1+¢ and v = O(1).



Problem (Min-Max k-Partitioning). Given edge-weighted graph G and
positive k that divides n, partition V(G) into Si, ..., Sk of equal size so as
to minimize max 6(.5;).

Best known algorithm based on previous work is a (true) O(k+/logn)-
approximation.

We will prove the following.
Theorem 2. For every fixed € > 0 there is an algorithm that outputs
Si,..., S, withmax [S;| < 2(14€)n/k and max §(S;) < O (vIognlogk) OPT.

(The following example shows that greedily using Corollary 1 might give
a solution as bad as Q(k) OPT.

The algorithm has two phases. In the first phase (Algorithm 1) using
Corollary 1 as a procedure we generate a family S of subsets of V' of size
< Bn/k (note that S is a multiset, i.e. may contain several copies of the same
subset), whose every element has small expansion, and also has a certain
“uniformity” constraint. In the second phase (Algorithm 2) we generate
the partition Sy, So, ..., Sk using this family.

Algorithm 1 is shown in the next page (taken from the original paper).



Let C = {S CV : |S| < n/k} denote all the vertex-sets that are feasible for a single part. Note
that a feasible solution in Min—Max k—Partitioning corresponds to a partition of V into k parts,
where each part belongs to C. Algorithm [ll, described below, uniformly covers V using sets in C
(actually a slightly larger family than C). It is important to note that its output S is a multiset.

Algorithm 1: Covering Procedure for Min—-Max k—Partitioning:

Set t =1, and y'(v) =1forallv eV
while >\, y'(v) > 1/n do
// Solve the following using algorithm from Corollary m
Let St C V be the solution for Weighted p-Unbalanced Cut instance (G, y*, w, %, %>
Set § =S U{S'}.
// Update the weights of the covered vertices.
for every v € V do
| Set y"*(v) = 3 -4'(v) if v € S*, and y"!(v) = y(v) otherwise.
Set t =t + 1.

return S

Theorem 3.1. Running Algorithm [| on an instance of Min-Maz k—Partitioning outputs S that
satisfies (here OPT denotes the optimal value of the instance):

1. For all S € S we have §(S) < a-OPT and |S| < 5-n/k.
2. For allv € V we have |{S € S:S53v}|/|S]| > 1/(5vk).

Proof. For an iteration ¢, let us denote Y* := % i, y*(v). The first assertion of the theorem is
immediate from the following claim.

Claim 3.2. Every iteration t of Algorithm [l satisfies 6(S') < a- OPT and |St| < B -n/k.

Proof. Tt suffices to show that the optimal value of the Weighted p-Unbalanced Cut instance
(G, ', w, %, %) is at most OPT. To see this, consider the optimal solution {S}}¥_; of the original
Min-Max k—Partitioning instance. We have |S}| < n/k and w(d(S;)) < OPT for all ¢ € [k]. Since
{S#1k_| partitions V, there is some j € [k] with y'(S5) > Y'/k. Tt now follows that S is a feasible
solution to the Weighted p-Unbalanced Cut instance (G, vy, w, %, %>, with objective value at most

OPT, which proves the claim. O

We proceed to prove the second assertion of Theorem B.1]. Let ¢ denote the number of iterations
of the while loop, for the given Min—-Max k—Partitioning instance. For any v € V', let N,, denote the
number of iterations ¢ with S* > v. Then, by the y-updates we have y**1(v) = 1/2Nv. Moreover, the
termination condition implies that 3**1(v) < 1/n (since Y+ < 1/n). Thus we obtain N, > log, n
for all v € V. From the approximation guarantee of the Weighted p-Unbalanced Cut algorithm, it

follows that y*(S*) > ﬁ .Y in every iteration ¢. Thus Y =Y —1.4/(S") < (1 - ﬁ) Y. This

/-1 /-1
implies that Y*¢ < (1 — 27%) Y= (1 — ﬁ) -n. However Y* > 1/n since the algorithm
performs ¢ iterations. Thus, £ <1+ 4y k-lnn < 5yk - logyn. This proves [{S € §: S 3 v}|/|S| =

N, /€ > (57y)~ kL. O
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Lemma 1. Let a, 8, be the same as Corollary 1.
1. For all S € § we have §(S) < o OPT and |S| < fn/k.
2. For all v € V we have |{S € S:v e S}|/|S| > 1/5vk.

Proof. 1. Let ST,..., S be the optimal solution for the original min-max
graph partitioning problem and fix iteration index t. For some i we
have y'(SF) > y'(V)/k hence S} is feasible for weighted p-unbalanced
cut with weights y*. Done by Corollary 1.

2. Let £ be the total number of iterations, and N, be number of times ¢
with v € St. By termination, for all v we have y*T!(v) < 1/n hence
N, > logy n.

From Corollary 1, y*(S*) > y*(V)/~vk for all t. Thus
YWV =y V) - 50 (8 < (1 5 ) (V)
2 - 2vk ’

SO

. 1 -1
<(1-— Ly
< (1-5) P,
but y*(V) > 1/n (because the algorithm had ¢ iterations) and y* (V) =

n, so
£ <1+ 4vkInn < 5vklogyn,

hence
N,/l > logyn/5vklogan = 1/5vk. O



The following lemma will be used in the analysis, see the original paper
for the proof.
The Aggregation Lemma. Let ay,...,a4,b1,...,b,, A, B, S, T be nonneg-

ative reals satisfying
a; < A,bi < B,Zai < S,Zbl <T.

Assume that for all 7 # j, at least one of a; +a; > A or b; +b; > B holds.
Then

t < S + ! + 5T 1
1T tmexy 51
Algorithm 2, shown in the next page (taken from the original paper)

receives as input a family (multiset) S of subsets of V' such that
i) all S € S satisty |S| < 2n/k and 6(S) < B, and

ii) every v € V is covered by at least a ¢/k fraction of the members of S
(for some ¢ € (0,1);

and outputs a partition of V.



Algorithm 2: Aggregation Procedure for Min—-Max k—Partitioning:

1 Sampling
Sort sets in S in a random order: Si,Ss,...,S|s. Let P; = 5; \ Uj<iS;
2 Replacing Expanding Sets with Sets from S

while there is a set P; such that 6(P;) > 2B do
| Set P =S, and for all j # 4, set P; = P;\ ;.

3 Aggregating
Let B’ = max{+ >, 6(P),2B}.
while there are P; # &, P; # & (i # j) such that |P;| + |Pj| < 2(1 4 ¢)n/k and
§(P) +d(P;) <2B'e71 do
| Set P, = P, UP; and set P; = @.

4 return all non-empty sets PF;.

v ¢ S), Pr((u,v) € E(P;,Uj>:P;) | Si = 8) < Pr(v ¢ Uj«iS; | Si = 85) < (1 —¢/k)"1, since v is
covered by at least ¢/k fraction of sets in S and is not covered by S; = S. Hence,

Elw(E(P;,Uj>iPy)) | ;= 8] < (1= ¢/k)710(8) < (1= c/k)™'B,

and E[w(E(P;,U;>:P;))] < (1 — ¢/k)""1B. Therefore, the total expected weight of edges crossing
the boundary of P;’s is at most Y ;2 (1 — ¢/k)'B = kB/c, and E[>_, §(P;)] < 2kB/c.

2. After each iteration of step 2, the following invariant holds: the collection of sets {P;} is a
partition of V' and P; C S; for all i. Particularly, |P;| < |S;| < 2n/k. The key observation is that
at every iteration of the “while” loop, the sum Z d(Pj) decreases by at least 2B. This is due to
the following uncrossing argument:

(S)+ Y0P\ Si) < +Z( (B(P; \ S, 50)) = w(E(S; \ P, Fy) )

JFi JF#i
< ats)+ (D ) (E(V\ 5:.5) = w(E(P:,V\ P))
i 5(S) 3(Py)

_ (Za >+25 ) — 20(P, (Za )—23.

we used that P; C S;, all P; are disjoint, Uj;(P; \ S;) C V' \ Si, P, C S; \ P}, Ujx P =V \ P;.
Hence, the number of iterations of the loop in step 2 is always polynomially bounded and after the
last iteration E[>", 6(P;)] < 2kB/c (the expectation is over random choices at step 1; the step 2
does not use random bits). Hence, E[B'] < 4B/c.

3. The following analysis holds conditional on any value of B’. After each iteration of step 3, the
following invariant holds: the collection of sets {P;} is a partition of V. Moreover, |P;| < 2(14¢)n/k
and §(P;) < 2B’e~! (note: after step 2, 6(P;) < 2B < B’ for each i).

When the loop terminates, we obtain a partition of V' into sets P; satisfying |P;| < 2(1+4¢)n/k,
S Bl = n, 6(P) < 2Be!, 3. 0(P;) < kB', such that no two sets can be merged without
violating above constraints. Hence by Lemma B4 below (with a; = |P;| and b; = 6(F;)), the

number of non-empty sets is at most 2 2(1+€)n/k + 255 r=04+e)tk+(e/2)k <k, O
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Lemma 2. For every fixed € € (0,1), Algorithm 2 outputs a partition P
of V(@) into at most k sets such that

E[max §(P) : P € P] < 4B/ce,
and |P| < 2(1 +€)n/k for all P € P.

Proof. Let A := Y (F;). (A/2 is the number of crossing edges.) Notice
that during the algorithm the P;’s always partition V(G), and for all i we
have |P;| < 2(1 + €)n/k, and during the first two steps P; C S;.

Claim 1. After step 1 (Sampling) finishes, E[A] < 2kB/c.

Proof.
A2 = Z w(E(P;, Uj>iP;))

i
Fix some ¢ and some S € S and we bound E [w(E(P;,U;~;P;))] conditioned
on S; = S. Fix uwv with v € Pj,v € Ujs;Pj sou € S,v ¢ S. If uv €
E(P;,Uj>;P;) then v was not covered in the first i — 1 sets in the chosen
order. However, v is covered by a ¢/k fraction of the sets in S, hence the
probability of this is at most (1 — ¢/k)*~!, thus

E[w(E(P;,UjsiP;))|S; = 8] < (1 —¢/k)"™18(S) < (1 —¢/k)"'B,

Efw(E(P:UjsiP)) < (1 c/k)i'B

holds for all . Thus

E[A/2] = ZE E(P;,U;>i P <Z —¢/k)"'B=kB/c. O

Claim 2. In every iteration of the step 2 (Replacing Expanding Sets
with Sets from S), A is decreased by at least 2B. (Proof by picture!)

Hence step 2 takes polynomial time in expectation, and after its com-
pletion, E[A] < 2kB/c, so E[B’] < 2B/c. Also for all 1,

§(P) <2B < B' <2B'/e.



When step 3 (Aggregating) terminates, we have
|P;| <2(14¢€)n/k Vi
> IRl =n
§5(P) <2B'/e Vi
> 6(P) < kB’

and no two of the P;’s can be merged without violating these constraints.

So by The Aggregation Lemma, the number of (nonempty) sets is at most

kB’ N n
2B'/e 2(1+¢€)n/k

S ma { kB’ n } ek k k
X -

1 — < k.
2B J¢" 2(1 1 e)n/k’ 2 oo 2(1+e =

This completes the proof since in the final solution,

E[maxd(P) : P € P] < 2E[B’]/e < 4B/ce. O



Proof of Theorem 2. Run Algorithm 1 to get the family S, and then run
Algorithm 2 (with B = max{d(S) : S € S}) to get the desired partition
P. By Lemma 1, the conditions of Lemma 2 are satisfied (with B = a OPT
and ¢ = 1/5v) and Algorithm 2 outputs a partition with

E[max§(P) : P € P] < 4B/ce < (20ary/¢) OPT = O (x/lognlog k:) OPT.

The algorithm can be generalized to handle additional constraints: a
family of terminal sets that must be separated by the partition, and one can
also put an upper bound for the sum boundary sizes. See Section 4 of the
original paper for the details.

Problem (Min-Max-Multiway-Cut). Given edge-weighted graph G and
special vertices t1,. .., tx, partition V(G) into S, ..., Sk such that Vi : t; €
S; so as to minimize max d(.5;).

The best known algorithm for this problem has approximation factor
O(log?n) [Svitkina and Tardos’04]. The generalized algorithm results in
a (true) O(y/lognlog k)-approximation algorithm for Min-Max-Multiway-
Cut.



