
This is a summary of the talk I gave on November 9th of 2011 in Uni-

versity of Waterloo. The aim is to describe one of the main results of the

paper

Min-Max Graph Partitioning and Small Set Expansion by Bansal,

Feige, Krauthgamer, Makarychev, Nagarajan, Naor and Schwartz

(FOCS’11).

The version available on http://arxiv.org/abs/1110.4319v2 was used.

Abbas Mehrabian

Problem (Small Set Expansion). Given edge-weighted graph G and

ρ ∈ (0, 0.5], find

OPT := min
|S|≤ρn

δ(S)

|S|
.

An O(log n) approximation can be derived using Räcke’08.

The authors prove the following theorem in the paper, which we will not

prove, but shall use a corollary of it.

Theorem 1. For every fixed ε > 0 there is an algorithm that outputs a set

S of size ≤ (1 + ε)ρn with edge expansion O
(√

log n log(1/ρ)
)

OPT.

Remarks.

1. This algorithm and all following algorithms are randomized, have poly-

nomial expected running time, and produce the desired output with

high probability.

2. The algorithm uses an SDP relaxation, and uses “orthogonal sepa-

rators,” (introduced by Chlamtac, Makarychev, Makarychev’06) for

rounding it.

3. A more general theorem is proved, in which the vertices are also

weighted, and there is a lower bound on the weight of the set S.

4. For graphs excluding a fixed minor/having fixed genus, the approxi-

mation factor is improved to O(1). The proof uses an LP relaxation

and a new notion called “LP separators,” and the authors build these

using “separating decompositions” of graph metrics.

Problem (Weighted ρ-Unbalanced Cut). Given graphG, vertex weights

y, edge weights w and ρ ∈ (0, 1] the goal is to find S minimizing δ(S) satis-

fying

y(S) ≥ ρy(V) and |S| ≤ ρn

Corollary 1. For every fixed ε > 0 there is an algorithm that finds

set S with |S| ≤ βρn, y(S) ≥ ρy(V)/γ and δ(S) ≤ αOPT, where α =

O
(√

log n log(1/ρ)
)

, β = 1 + ε, and γ = O(1).

1

Problem (Min-Max k-Partitioning). Given edge-weighted graph G and

positive k that divides n, partition V (G) into S1, . . . , Sk of equal size so as

to minimize max δ(Si).

Best known algorithm based on previous work is a (true) O(k
√

log n)-

approximation.

We will prove the following.

Theorem 2. For every fixed ε > 0 there is an algorithm that outputs

S1, . . . , Sk with max |Si| ≤ 2(1+ε)n/k and max δ(Si) ≤ O
(√

log n log k
)

OPT.

(The following example shows that greedily using Corollary 1 might give

a solution as bad as Ω(k) OPT.

...

...

)

The algorithm has two phases. In the first phase (Algorithm 1) using

Corollary 1 as a procedure we generate a family S of subsets of V of size

≤ βn/k (note that S is a multiset, i.e. may contain several copies of the same

subset), whose every element has small expansion, and also has a certain

“uniformity” constraint. In the second phase (Algorithm 2) we generate

the partition S1, S2, . . . , Sk using this family.

Algorithm 1 is shown in the next page (taken from the original paper).

2

Let C = {S ⊆ V : |S| ≤ n/k} denote all the vertex-sets that are feasible for a single part. Note
that a feasible solution in Min–Max k–Partitioning corresponds to a partition of V into k parts,
where each part belongs to C. Algorithm 1, described below, uniformly covers V using sets in C
(actually a slightly larger family than C). It is important to note that its output S is a multiset.

Algorithm 1: Covering Procedure for Min–Max k–Partitioning:

Set t = 1, and y1(v) = 1 for all v ∈ V
while

∑

v∈V y
t(v) > 1/n do

// Solve the following using algorithm from Corollary 2.7.

Let St ⊆ V be the solution for Weighted ρ-Unbalanced Cut instance 〈G, yt, w, 1k , 1k 〉.
Set S = S ∪ {St}.
// Update the weights of the covered vertices.

for every v ∈ V do

Set yt+1(v) = 1
2 · yt(v) if v ∈ St, and yt+1(v) = yt(v) otherwise.

Set t = t+ 1.

return S

Theorem 3.1. Running Algorithm 1 on an instance of Min–Max k–Partitioning outputs S that
satisfies (here OPT denotes the optimal value of the instance):

1. For all S ∈ S we have δ(S) ≤ α ·OPT and |S| ≤ β · n/k.
2. For all v ∈ V we have |{S ∈ S : S ∋ v}|/|S| ≥ 1/(5γk).

Proof. For an iteration t, let us denote Y t :=
∑

v∈V y
t(v). The first assertion of the theorem is

immediate from the following claim.

Claim 3.2. Every iteration t of Algorithm 1 satisfies δ(St) ≤ α · OPT and |St| ≤ β · n/k.

Proof. It suffices to show that the optimal value of the Weighted ρ-Unbalanced Cut instance
〈G, yt, w, 1

k ,
1
k 〉 is at most OPT. To see this, consider the optimal solution {S∗

i }ki=1 of the original
Min–Max k–Partitioning instance. We have |S∗

i | ≤ n/k and w(δ(S∗
i)) ≤ OPT for all i ∈ [k]. Since

{S∗
i }ki=1 partitions V , there is some j ∈ [k] with yt(S∗

j) ≥ Y t/k. It now follows that S∗
j is a feasible

solution to the Weighted ρ-Unbalanced Cut instance 〈G, yt, w, 1
k ,

1
k 〉, with objective value at most

OPT, which proves the claim.

We proceed to prove the second assertion of Theorem 3.1. Let ℓ denote the number of iterations
of the while loop, for the given Min–Max k–Partitioning instance. For any v ∈ V , let Nv denote the
number of iterations t with St ∋ v. Then, by the y-updates we have yℓ+1(v) = 1/2Nv . Moreover, the
termination condition implies that yℓ+1(v) ≤ 1/n (since Y ℓ+1 ≤ 1/n). Thus we obtain Nv ≥ log2 n
for all v ∈ V . From the approximation guarantee of the Weighted ρ-Unbalanced Cut algorithm, it

follows that yt(St) ≥ 1
γ k ·Y t in every iteration t. Thus Y t+1 = Y t− 1

2 ·yt(St) ≤
(

1− 1
2γ k

)

·Y t. This

implies that Y ℓ ≤
(

1− 1
2γ k

)ℓ−1
· Y 1 =

(

1− 1
2γ k

)ℓ−1
· n. However Y ℓ > 1/n since the algorithm

performs ℓ iterations. Thus, ℓ ≤ 1 + 4γ k · lnn ≤ 5γ k · log2 n. This proves |{S ∈ S : S ∋ v}|/|S| =
Nv/ℓ ≥ (5γ)−1k−1.

16

Lemma 1. Let α, β, γ be the same as Corollary 1.

1. For all S ∈ S we have δ(S) ≤ αOPT and |S| ≤ βn/k.

2. For all v ∈ V we have |{S ∈ S : v ∈ S}|/|S| ≥ 1/5γk.

Proof. 1. Let S∗1 , . . . , S
∗
k be the optimal solution for the original min-max

graph partitioning problem and fix iteration index t. For some i we

have yt(S∗i) ≥ yt(V)/k hence S∗i is feasible for weighted ρ-unbalanced

cut with weights yt. Done by Corollary 1.

2. Let ` be the total number of iterations, and Nv be number of times t

with v ∈ St. By termination, for all v we have y`+1(v) ≤ 1/n hence

Nv ≥ log2 n.

From Corollary 1, yt(St) ≥ yt(V)/γk for all t. Thus

yt+1(V) = yt(V)− 1

2
yt(St) ≤

(
1− 1

2γk

)
yt(V),

so

y`(V) ≤
(

1− 1

2γk

)`−1
y1(V),

but y`(V) > 1/n (because the algorithm had ` iterations) and y1(V) =

n, so

` ≤ 1 + 4γk lnn ≤ 5γk log2 n,

hence

Nv/` ≥ log2 n/5γk log2 n = 1/5γk.

4

The following lemma will be used in the analysis, see the original paper

for the proof.

The Aggregation Lemma. Let a1, . . . , at, b1, . . . , bt, A,B, S, T be nonneg-

ative reals satisfying

ai < A, bi < B,
∑

ai ≤ S,
∑

bi ≤ T.

Assume that for all i 6= j, at least one of ai + aj > A or bi + bj > B holds.

Then

t <
S

A
+
T

B
+ max

{
S

A
,
T

B
, 1

}
.

Algorithm 2, shown in the next page (taken from the original paper)

receives as input a family (multiset) S of subsets of V such that

i) all S ∈ S satisfy |S| ≤ 2n/k and δ(S) ≤ B, and

ii) every v ∈ V is covered by at least a c/k fraction of the members of S
(for some c ∈ (0, 1);

and outputs a partition of V .

5

Algorithm 2: Aggregation Procedure for Min–Max k–Partitioning:

1 Sampling

Sort sets in S in a random order: S1, S2, . . . , S|S|. Let Pi = Si \ ∪j<iSj.

2 Replacing Expanding Sets with Sets from S
while there is a set Pi such that δ(Pi) > 2B do

Set Pi = Si, and for all j 6= i, set Pj = Pj \ Si.
3 Aggregating

Let B′ = max{ 1k
∑

i δ(P), 2B}.
while there are Pi 6= ∅, Pj 6= ∅ (i 6= j) such that |Pi|+ |Pj | ≤ 2(1 + ε)n/k and
δ(Pi) + δ(Pj) ≤ 2B′ε−1 do

Set Pi = Pi ∪ Pj and set Pj = ∅.

4 return all non-empty sets Pi.

v /∈ S), Pr((u, v) ∈ E(Pi,∪j>iPj) | Si = S) ≤ Pr(v /∈ ∪j<iSj | Si = S) ≤ (1 − c/k)i−1, since v is
covered by at least c/k fraction of sets in S and is not covered by Si = S. Hence,

E[w(E(Pi,∪j>iPj)) | Si = S] ≤ (1− c/k)i−1δ(S) ≤ (1− c/k)i−1B,

and E[w(E(Pi,∪j>iPj))] ≤ (1 − c/k)i−1B. Therefore, the total expected weight of edges crossing
the boundary of Pi’s is at most

∑∞
i=0(1− c/k)iB = kB/c, and E

[∑

i δ(Pi)
]
≤ 2kB/c.

2. After each iteration of step 2, the following invariant holds: the collection of sets {Pi} is a
partition of V and Pi ⊂ Si for all i. Particularly, |Pi| ≤ |Si| ≤ 2n/k. The key observation is that
at every iteration of the “while” loop, the sum

∑

j δ(Pj) decreases by at least 2B. This is due to
the following uncrossing argument:

δ(Si) +
∑

j 6=i

δ(Pj \ Si) ≤ δ(Si) +
∑

j 6=i

(

δ(Pj) + w(E(Pj \ Si, Si))− w(E(Si \ Pj, Pj)
)

≤ δ(Si) +
(∑

j 6=i

δ(Pj)
)

+ w(E(V \ Si, Si))
︸ ︷︷ ︸

δ(Si)

−w(E(Pi, V \ Pi))
︸ ︷︷ ︸

δ(Pi)

=
(∑

j

δ(Pj)
)

+ 2δ(Si)− 2δ(Pi) ≤
(∑

j

δ(Pj)
)

− 2B.

we used that Pi ⊂ Si, all Pj are disjoint, ∪j 6=i(Pj \ Si) ⊂ V \ Si, Pi ⊂ Si \ Pj , ∪j 6=iPj = V \ Pi.
Hence, the number of iterations of the loop in step 2 is always polynomially bounded and after the
last iteration E

[∑

i δ(Pi)
]
≤ 2kB/c (the expectation is over random choices at step 1; the step 2

does not use random bits). Hence, E[B′] ≤ 4B/c.
3. The following analysis holds conditional on any value of B′. After each iteration of step 3, the

following invariant holds: the collection of sets {Pi} is a partition of V . Moreover, |Pi| ≤ 2(1+ε)n/k
and δ(Pi) ≤ 2B′ε−1 (note: after step 2, δ(Pi) ≤ 2B ≤ B′ for each i).

When the loop terminates, we obtain a partition of V into sets Pi satisfying |Pi| ≤ 2(1+ ε)n/k,
∑

i |Pi| = n, δ(Pi) ≤ 2B′ε−1,
∑

i δ(Pi) ≤ kB′, such that no two sets can be merged without
violating above constraints. Hence by Lemma 3.4 below (with ai = |Pi| and bi = δ(Pi)), the
number of non-empty sets is at most 2 n

2(1+ε)n/k + kB′

2B′ε−1 = (1 + ε)−1k + (ε/2)k ≤ k.

18

Lemma 2. For every fixed ε ∈ (0, 1), Algorithm 2 outputs a partition P
of V (G) into at most k sets such that

E[max δ(P) : P ∈ P] ≤ 4B/cε,

and |P | ≤ 2(1 + ε)n/k for all P ∈ P.

Proof. Let ∆ :=
∑
δ(Pi). (∆/2 is the number of crossing edges.) Notice

that during the algorithm the Pi’s always partition V (G), and for all i we

have |Pi| ≤ 2(1 + ε)n/k, and during the first two steps Pi ⊆ Si.
Claim 1. After step 1 (Sampling) finishes, E[∆] ≤ 2kB/c.

Proof.

∆/2 =
∑
i

w(E(Pi,∪j>iPj))

Fix some i and some S ∈ S and we bound E [w(E(Pi,∪j>iPj))] conditioned

on Si = S. Fix uv with u ∈ Pi, v ∈ ∪j>iPj so u ∈ S, v /∈ S. If uv ∈
E(Pi,∪j>iPj) then v was not covered in the first i − 1 sets in the chosen

order. However, v is covered by a c/k fraction of the sets in S, hence the

probability of this is at most (1− c/k)i−1, thus

E[w(E(Pi,∪j>iPj))|Si = S] ≤ (1− c/k)i−1δ(S) ≤ (1− c/k)i−1B,

so

E[w(E(Pi,∪j>iPj)) ≤ (1− c/k)i−1B

holds for all i. Thus

E[∆/2] =
∑
i

E[w(E(Pi,∪j>iPj))] ≤
∑
i

(1− c/k)i−1B = kB/c.

Claim 2. In every iteration of the step 2 (Replacing Expanding Sets

with Sets from S), ∆ is decreased by at least 2B. (Proof by picture!)

Hence step 2 takes polynomial time in expectation, and after its com-

pletion, E[∆] ≤ 2kB/c, so E[B′] ≤ 2B/c. Also for all i,

δ(Pi) ≤ 2B ≤ B′ ≤ 2B′/ε.

7

When step 3 (Aggregating) terminates, we have

|Pi| ≤ 2(1 + ε)n/k ∀i∑
i

|Pi| = n

δ(Pi) ≤ 2B′/ε ∀i∑
i

δ(Pi) ≤ kB′

and no two of the Pi’s can be merged without violating these constraints.

So by The Aggregation Lemma, the number of (nonempty) sets is at most

kB′

2B′/ε
+

n

2(1 + ε)n/k
+max

{
kB′

2B′/ε
,

n

2(1 + ε)n/k
, 1

}
=
εk

2
+

k

2(1 + ε)
+

k

2(1 + ε)
≤ k.

This completes the proof since in the final solution,

E[max δ(P) : P ∈ P] ≤ 2E[B′]/ε ≤ 4B/cε.

8

Proof of Theorem 2. Run Algorithm 1 to get the family S, and then run

Algorithm 2 (with B = max{δ(S) : S ∈ S}) to get the desired partition

P. By Lemma 1, the conditions of Lemma 2 are satisfied (with B = αOPT

and c = 1/5γ) and Algorithm 2 outputs a partition with

E[max δ(P) : P ∈ P] ≤ 4B/cε ≤ (20αγ/ε) OPT = O
(√

log n log k
)

OPT .

The algorithm can be generalized to handle additional constraints: a

family of terminal sets that must be separated by the partition, and one can

also put an upper bound for the sum boundary sizes. See Section 4 of the

original paper for the details.

Problem (Min-Max-Multiway-Cut). Given edge-weighted graph G and

special vertices t1, . . . , tk, partition V (G) into S1, . . . , Sk such that ∀i : ti ∈
Si so as to minimize max δ(Si).

The best known algorithm for this problem has approximation factor

O(log2 n) [Svitkina and Tardos’04]. The generalized algorithm results in

a (true) O(
√

log n log k)-approximation algorithm for Min-Max-Multiway-

Cut.

9

