This is a summary of the talk I gave on November 9th of 2011 in University of Waterloo. The aim is to describe one of the main results of the paper

Min-Max Graph Partitioning and Small Set Expansion by Bansal, Feige, Krauthgamer, Makarychev, Nagarajan, Naor and Schwartz (FOCS'11).

The version available on http://arxiv.org/abs/1110.4319v2 was used. Abbas Mehrabian

Problem (Small Set Expansion). Given edge-weighted graph G and $\rho \in (0, 0.5]$, find

$$OPT := \min_{|S| \le \rho n} \frac{\delta(S)}{|S|}.$$

An $O(\log n)$ approximation can be derived using Räcke'08.

The authors prove the following theorem in the paper, which we will not prove, but shall use a corollary of it.

Theorem 1. For every fixed $\epsilon > 0$ there is an algorithm that outputs a set S of size $\leq (1 + \epsilon)\rho n$ with edge expansion $O\left(\sqrt{\log n \log(1/\rho)}\right)$ OPT. **Remarks.**

- 1. This algorithm and all following algorithms are randomized, have polynomial expected running time, and produce the desired output with high probability.
- The algorithm uses an SDP relaxation, and uses "orthogonal separators," (introduced by Chlamtac, Makarychev, Makarychev'06) for rounding it.
- 3. A more general theorem is proved, in which the vertices are also weighted, and there is a lower bound on the weight of the set S.
- 4. For graphs excluding a fixed minor/having fixed genus, the approximation factor is improved to O(1). The proof uses an LP relaxation and a new notion called "LP separators," and the authors build these using "separating decompositions" of graph metrics.

Problem (Weighted ρ **-Unbalanced Cut).** Given graph G, vertex weights y, edge weights w and $\rho \in (0, 1]$ the goal is to find S minimizing $\delta(S)$ satisfying

$$y(S) \ge \rho y(V)$$
 and $|S| \le \rho n$

Corollary 1. For every fixed $\epsilon > 0$ there is an algorithm that finds set *S* with $|S| \leq \beta \rho n$, $y(S) \geq \rho y(V)/\gamma$ and $\delta(S) \leq \alpha \text{ OPT}$, where $\alpha = O\left(\sqrt{\log n \log(1/\rho)}\right)$, $\beta = 1 + \epsilon$, and $\gamma = O(1)$. **Problem (Min-Max** k-Partitioning). Given edge-weighted graph G and positive k that divides n, partition V(G) into S_1, \ldots, S_k of equal size so as to minimize max $\delta(S_i)$.

Best known algorithm based on previous work is a (true) $O(k\sqrt{\log n})$ -approximation.

We will prove the following.

Theorem 2. For every fixed $\epsilon > 0$ there is an algorithm that outputs S_1, \ldots, S_k with $\max |S_i| \le 2(1+\epsilon)n/k$ and $\max \delta(S_i) \le O\left(\sqrt{\log n \log k}\right)$ OPT.

(The following example shows that greedily using Corollary 1 might give a solution as bad as $\Omega(k)$ OPT.

:

)

The algorithm has two phases. In the first phase (Algorithm 1) using Corollary 1 as a procedure we generate a family S of subsets of V of size $\leq \beta n/k$ (note that S is a multiset, i.e. may contain several copies of the same subset), whose every element has small expansion, and also has a certain "uniformity" constraint. In the second phase (Algorithm 2) we generate the partition S_1, S_2, \ldots, S_k using this family.

Algorithm 1 is shown in the next page (taken from the original paper).

Let $C = \{S \subseteq V : |S| \le n/k\}$ denote all the vertex-sets that are feasible for a single part. Note that a feasible solution in Min–Max k–Partitioning corresponds to a partition of V into k parts, where each part belongs to C. Algorithm 1, described below, *uniformly covers* V using sets in C (actually a slightly larger family than C). It is important to note that its output S is a multiset.

Algorithm 1: Covering Procedure for Min–Max *k*–Partitioning:

Set t = 1, and $y^1(v) = 1$ for all $v \in V$ while $\sum_{v \in V} y^t(v) > 1/n$ do // Solve the following using algorithm from Corollary 2.7. Let $S^t \subseteq V$ be the solution for Weighted ρ -Unbalanced Cut instance $\langle G, y^t, w, \frac{1}{k}, \frac{1}{k} \rangle$. Set $S = S \cup \{S^t\}$. // Update the weights of the covered vertices. for every $v \in V$ do $\sum_{i=1}^{i} \operatorname{Set} y^{t+1}(v) = \frac{1}{2} \cdot y^t(v)$ if $v \in S^t$, and $y^{t+1}(v) = y^t(v)$ otherwise. Set t = t + 1. return S

Theorem 3.1. Running Algorithm 1 on an instance of Min–Max k–Partitioning outputs S that satisfies (here OPT denotes the optimal value of the instance):

- 1. For all $S \in S$ we have $\delta(S) \leq \alpha \cdot \mathsf{OPT}$ and $|S| \leq \beta \cdot n/k$.
- 2. For all $v \in V$ we have $|\{S \in S : S \ni v\}|/|S| \ge 1/(5\gamma k)$.

Proof. For an iteration t, let us denote $Y^t := \sum_{v \in V} y^t(v)$. The first assertion of the theorem is immediate from the following claim.

Claim 3.2. Every iteration t of Algorithm 1 satisfies $\delta(S^t) \leq \alpha \cdot \mathsf{OPT}$ and $|S^t| \leq \beta \cdot n/k$.

Proof. It suffices to show that the optimal value of the Weighted ρ -Unbalanced Cut instance $\langle G, y^t, w, \frac{1}{k}, \frac{1}{k} \rangle$ is at most OPT. To see this, consider the optimal solution $\{S_i^*\}_{i=1}^k$ of the original Min–Max k-Partitioning instance. We have $|S_i^*| \leq n/k$ and $w(\delta(S_i^*)) \leq \text{OPT}$ for all $i \in [k]$. Since $\{S_i^*\}_{i=1}^k$ partitions V, there is some $j \in [k]$ with $y^t(S_j^*) \geq Y^t/k$. It now follows that S_j^* is a feasible solution to the Weighted ρ -Unbalanced Cut instance $\langle G, y^t, w, \frac{1}{k}, \frac{1}{k} \rangle$, with objective value at most OPT, which proves the claim.

We proceed to prove the second assertion of Theorem 3.1. Let ℓ denote the number of iterations of the while loop, for the given Min–Max k–Partitioning instance. For any $v \in V$, let N_v denote the number of iterations t with $S^t \ni v$. Then, by the y-updates we have $y^{\ell+1}(v) = 1/2^{N_v}$. Moreover, the termination condition implies that $y^{\ell+1}(v) \le 1/n$ (since $Y^{\ell+1} \le 1/n$). Thus we obtain $N_v \ge \log_2 n$ for all $v \in V$. From the approximation guarantee of the Weighted ρ -Unbalanced Cut algorithm, it follows that $y^t(S^t) \ge \frac{1}{\gamma k} \cdot Y^t$ in every iteration t. Thus $Y^{t+1} = Y^t - \frac{1}{2} \cdot y^t(S^t) \le \left(1 - \frac{1}{2\gamma k}\right) \cdot Y^t$. This implies that $Y^\ell \le \left(1 - \frac{1}{2\gamma k}\right)^{\ell-1} \cdot Y^1 = \left(1 - \frac{1}{2\gamma k}\right)^{\ell-1} \cdot n$. However $Y^\ell > 1/n$ since the algorithm performs ℓ iterations. Thus, $\ell \le 1 + 4\gamma k \cdot \ln n \le 5\gamma k \cdot \log_2 n$. This proves $|\{S \in S : S \ni v\}|/|S| =$ $N_v/\ell \ge (5\gamma)^{-1}k^{-1}$. **Lemma 1.** Let α, β, γ be the same as Corollary 1.

- 1. For all $S \in \mathcal{S}$ we have $\delta(S) \leq \alpha \text{ OPT}$ and $|S| \leq \beta n/k$.
- 2. For all $v \in V$ we have $|\{S \in \mathcal{S} : v \in S\}|/|\mathcal{S}| \ge 1/5\gamma k$.
- Proof. 1. Let S_1^*, \ldots, S_k^* be the optimal solution for the original min-max graph partitioning problem and fix iteration index t. For some i we have $y^t(S_i^*) \ge y^t(V)/k$ hence S_i^* is feasible for weighted ρ -unbalanced cut with weights y^t . Done by Corollary 1.
 - 2. Let ℓ be the total number of iterations, and N_v be number of times t with $v \in S^t$. By termination, for all v we have $y^{\ell+1}(v) \leq 1/n$ hence $N_v \geq \log_2 n$.

From Corollary 1, $y^t(S^t) \ge y^t(V)/\gamma k$ for all t. Thus

$$y^{t+1}(V) = y^t(V) - \frac{1}{2}y^t(S^t) \le \left(1 - \frac{1}{2\gamma k}\right)y^t(V),$$

 \mathbf{SO}

$$y^{\ell}(V) \le \left(1 - \frac{1}{2\gamma k}\right)^{\ell-1} y^{1}(V),$$

but $y^{\ell}(V) > 1/n$ (because the algorithm had ℓ iterations) and $y^1(V) = n$, so

 $\ell \le 1 + 4\gamma k \ln n \le 5\gamma k \log_2 n,$

hence

$$N_v/\ell \ge \log_2 n/5\gamma k \log_2 n = 1/5\gamma k.$$

The following lemma will be used in the analysis, see the original paper for the proof.

The Aggregation Lemma. Let $a_1, \ldots, a_t, b_1, \ldots, b_t, A, B, S, T$ be nonnegative reals satisfying

$$a_i < A, b_i < B, \sum a_i \le S, \sum b_i \le T.$$

Assume that for all $i \neq j$, at least one of $a_i + a_j > A$ or $b_i + b_j > B$ holds. Then

$$t < \frac{S}{A} + \frac{T}{B} + \max\left\{\frac{S}{A}, \frac{T}{B}, 1\right\}.$$

Algorithm 2, shown in the next page (taken from the original paper) receives as input a family (multiset) S of subsets of V such that

- i) all $S \in \mathcal{S}$ satisfy $|S| \leq 2n/k$ and $\delta(S) \leq B$, and
- ii) every $v \in V$ is covered by at least a c/k fraction of the members of S (for some $c \in (0, 1)$;

and outputs a partition of V.

Algorithm 2: Aggregation Procedure for Min–Max *k*–Partitioning:

1 Sampling

Sort sets in \mathcal{S} in a random order: $S_1, S_2, \ldots, S_{|\mathcal{S}|}$. Let $P_i = S_i \setminus \bigcup_{j \leq i} S_j$.

- 2 Replacing Expanding Sets with Sets from ${\cal S}$
 - while there is a set P_i such that $\delta(P_i) > 2B$ do
- 3 Aggregating

Let $B' = \max\{\frac{1}{k}\sum_{i}\delta(P), 2B\}$. while there are $P_i \neq \emptyset$, $P_j \neq \emptyset$ $(i \neq j)$ such that $|P_i| + |P_j| \leq 2(1 + \varepsilon)n/k$ and $\delta(P_i) + \delta(P_j) \leq 2B'\varepsilon^{-1}$ do $\begin{bmatrix} & \text{Set } P_i = P_i \cup P_j \text{ and set } P_j = \emptyset. \end{aligned}$

4 return all non-empty sets P_i .

 $v \notin S$, $\Pr((u, v) \in E(P_i, \bigcup_{j>i} P_j) | S_i = S) \leq \Pr(v \notin \bigcup_{j < i} S_j | S_i = S) \leq (1 - c/k)^{i-1}$, since v is covered by at least c/k fraction of sets in S and is not covered by $S_i = S$. Hence,

$$\mathbb{E}[w(E(P_i, \bigcup_{j>i} P_j)) \mid S_i = S] \le (1 - c/k)^{i-1} \delta(S) \le (1 - c/k)^{i-1} B,$$

and $\mathbb{E}[w(E(P_i, \bigcup_{j>i} P_j))] \leq (1 - c/k)^{i-1}B$. Therefore, the total expected weight of edges crossing the boundary of P_i 's is at most $\sum_{i=0}^{\infty} (1 - c/k)^i B = kB/c$, and $\mathbb{E}\left[\sum_i \delta(P_i)\right] \leq 2kB/c$.

2. After each iteration of step 2, the following invariant holds: the collection of sets $\{P_i\}$ is a partition of V and $P_i \subset S_i$ for all *i*. Particularly, $|P_i| \leq |S_i| \leq 2n/k$. The key observation is that at every iteration of the "while" loop, the sum $\sum_j \delta(P_j)$ decreases by at least 2B. This is due to the following uncrossing argument:

$$\begin{split} \delta(S_i) + \sum_{j \neq i} \delta(P_j \setminus S_i) &\leq \delta(S_i) + \sum_{j \neq i} \left(\delta(P_j) + w(E(P_j \setminus S_i, S_i)) - w(E(S_i \setminus P_j, P_j)) \right) \\ &\leq \delta(S_i) + \left(\sum_{j \neq i} \delta(P_j) \right) + \underbrace{w(E(V \setminus S_i, S_i))}_{\delta(S_i)} - \underbrace{w(E(P_i, V \setminus P_i))}_{\delta(P_i)} \\ &= \left(\sum_j \delta(P_j) \right) + 2\delta(S_i) - 2\delta(P_i) \leq \left(\sum_j \delta(P_j) \right) - 2B. \end{split}$$

we used that $P_i \subset S_i$, all P_j are disjoint, $\bigcup_{j \neq i} (P_j \setminus S_i) \subset V \setminus S_i$, $P_i \subset S_i \setminus P_j$, $\bigcup_{j \neq i} P_j = V \setminus P_i$. Hence, the number of iterations of the loop in step 2 is always polynomially bounded and after the last iteration $\mathbb{E}\left[\sum_i \delta(P_i)\right] \leq 2kB/c$ (the expectation is over random choices at step 1; the step 2 does not use random bits). Hence, $\mathbb{E}[B'] \leq 4B/c$.

3. The following analysis holds conditional on any value of B'. After each iteration of step 3, the following invariant holds: the collection of sets $\{P_i\}$ is a partition of V. Moreover, $|P_i| \leq 2(1+\varepsilon)n/k$ and $\delta(P_i) \leq 2B'\varepsilon^{-1}$ (note: after step 2, $\delta(P_i) \leq 2B \leq B'$ for each i).

When the loop terminates, we obtain a partition of V into sets P_i satisfying $|P_i| \leq 2(1+\varepsilon)n/k$, $\sum_i |P_i| = n, \ \delta(P_i) \leq 2B'\varepsilon^{-1}, \ \sum_i \delta(P_i) \leq kB'$, such that no two sets can be merged without violating above constraints. Hence by Lemma 3.4 below (with $a_i = |P_i|$ and $b_i = \delta(P_i)$), the number of non-empty sets is at most $2 \ \frac{n}{2(1+\varepsilon)n/k} + \frac{kB'}{2B'\varepsilon^{-1}} = (1+\varepsilon)^{-1}k + (\varepsilon/2)k \leq k$. **Lemma 2.** For every fixed $\epsilon \in (0,1)$, Algorithm 2 outputs a partition \mathcal{P} of V(G) into at most k sets such that

$$\mathbb{E}[\max \delta(P) : P \in \mathcal{P}] \le 4B/c\epsilon,$$

and $|P| \leq 2(1+\epsilon)n/k$ for all $P \in \mathcal{P}$.

Proof. Let $\Delta := \sum \delta(P_i)$. ($\Delta/2$ is the number of crossing edges.) Notice that during the algorithm the P_i 's always partition V(G), and for all i we have $|P_i| \leq 2(1 + \epsilon)n/k$, and during the first two steps $P_i \subseteq S_i$. Claim 1. After step 1 (Sampling) finishes, $\mathbb{E}[\Delta] \leq 2kB/c$.

Proof.

$$\Delta/2 = \sum_{i} w(E(P_i, \cup_{j>i} P_j))$$

Fix some *i* and some $S \in S$ and we bound $\mathbb{E}[w(E(P_i, \bigcup_{j>i} P_j))]$ conditioned on $S_i = S$. Fix uv with $u \in P_i, v \in \bigcup_{j>i} P_j$ so $u \in S, v \notin S$. If $uv \in E(P_i, \bigcup_{j>i} P_j)$ then *v* was not covered in the first i-1 sets in the chosen order. However, *v* is covered by a c/k fraction of the sets in S, hence the probability of this is at most $(1 - c/k)^{i-1}$, thus

$$\mathbb{E}[w(E(P_i, \bigcup_{j>i} P_j))|S_i = S] \le (1 - c/k)^{i-1}\delta(S) \le (1 - c/k)^{i-1}B,$$

 \mathbf{so}

$$\mathbb{E}[w(E(P_i, \bigcup_{j>i} P_j)) \le (1 - c/k)^{i-1}B]$$

holds for all i. Thus

$$\mathbb{E}[\Delta/2] = \sum_{i} \mathbb{E}[w(E(P_i, \bigcup_{j>i} P_j))] \le \sum_{i} (1 - c/k)^{i-1} B = kB/c. \quad \Box$$

Claim 2. In every iteration of the step 2 (Replacing Expanding Sets with Sets from S), Δ is decreased by at least 2*B*. (Proof by picture!)

Hence step 2 takes polynomial time in expectation, and after its completion, $\mathbb{E}[\Delta] \leq 2kB/c$, so $\mathbb{E}[B'] \leq 2B/c$. Also for all *i*,

$$\delta(P_i) \le 2B \le B' \le 2B'/\epsilon.$$

When step 3 (Aggregating) terminates, we have

$$\begin{split} |P_i| &\leq 2(1+\epsilon)n/k \quad \forall i \\ \sum_i |P_i| &= n \\ \delta(P_i) &\leq 2B'/\epsilon \quad \forall i \\ \sum_i \delta(P_i) &\leq kB' \end{split}$$

and no two of the P_i 's can be merged without violating these constraints. So by The Aggregation Lemma, the number of (nonempty) sets is at most

$$\frac{kB'}{2B'/\epsilon} + \frac{n}{2(1+\epsilon)n/k} + \max\left\{\frac{kB'}{2B'/\epsilon}, \frac{n}{2(1+\epsilon)n/k}, 1\right\} = \frac{\epsilon k}{2} + \frac{k}{2(1+\epsilon)} + \frac{k}{2(1+\epsilon)} \le k.$$

This completes the proof since in the final solution,

$$\mathbb{E}[\max \delta(P) : P \in \mathcal{P}] \le 2\mathbb{E}[B']/\epsilon \le 4B/c\epsilon. \quad \Box$$

Proof of Theorem 2. Run Algorithm 1 to get the family S, and then run Algorithm 2 (with $B = \max{\{\delta(S) : S \in S\}}$) to get the desired partition \mathcal{P} . By Lemma 1, the conditions of Lemma 2 are satisfied (with $B = \alpha \text{ OPT}$ and $c = 1/5\gamma$) and Algorithm 2 outputs a partition with

$$\mathbb{E}[\max \delta(P) : P \in \mathcal{P}] \le 4B/c\epsilon \le (20\alpha\gamma/\epsilon) \operatorname{OPT} = O\left(\sqrt{\log n \log k}\right) \operatorname{OPT}.$$

The algorithm can be generalized to handle additional constraints: a family of terminal sets that must be separated by the partition, and one can also put an upper bound for the sum boundary sizes. See Section 4 of the original paper for the details.

Problem (Min-Max-Multiway-Cut). Given edge-weighted graph G and special vertices t_1, \ldots, t_k , partition V(G) into S_1, \ldots, S_k such that $\forall i : t_i \in S_i$ so as to minimize max $\delta(S_i)$.

The best known algorithm for this problem has approximation factor $O(\log^2 n)$ [Svitkina and Tardos'04]. The generalized algorithm results in a (true) $O(\sqrt{\log n \log k})$ -approximation algorithm for Min-Max-Multiway-Cut.