
This is a summary of the talk I gave on December 7th of 2010 in University
of Waterloo. The aim is to describe the main contributions and ideas of the
paper

New Constructive Aspects of the Lovasz Local Lemma, by Bernhard
Haeupler, Barna Saha, Aravind Srinivasan (FOCS’10).

Abbas Mehrabian

The Setup

P is a finite set of n independent random variables.

A is a family of m (“bad”) events that are determined by these variables.

vbl(A) is the minimal set of variables that determine A.

Violation: An assignment of variables violates event A if it makes A happen.

Good assignment: An assignment is good if it does not violate any event.

Γ(B) = ΓA(B) is the set of events A ∈ A such that A 6= B and vbl(A), vbl(B)
intersect.

LLL conditions: A satisfies LLL conditions if there exists a function x : A →
(0, 1) such that for all events A,

Pr(A) ≤ x(A)
∏

B∈Γ(A)

(1− x(B)) .

Dependency graph: A simple graph G = GA that has vertex set A with A,B
adjacent if A 6= B and vbl(A), vbl(B) intersect.

δ is min
A
x(A)

∏
B∈Γ(A)

(1− x(B)).

Efficient verifiability: A set of events is called efficiently verifiable if, given an
assignment for P, one can efficiently find a violated event, or detect that
there is no such event.

∆ = ∆(H) is the maximum degree of graph H.

1

A Review of Lovász Local Lemma
Lovász Local Lemma (Erdös, Lovász’75). If A satisfies LLL conditions then
there exists a good assignment.
Example. Consider a k-CNF formula such that each clause shares variables
with at most 2k/e − 1 other clauses. Then there exists an assignment to the
variables such that all clauses are satisfied.

Proof. Give each variable a random (0 or 1) value with equal probability. Every
clause corresponds to a bad event whose probability is 2−k. Let x(A) := e/2k

for all such bad events. Then we have

1

2k
≤ e

2k
(1− e

2k
)

2k

e −1,

where we have used the inequality

(1− 1

d
)d−1 ≥ 1

e
.

Hence LLL conditions are satisfied and there exists a good assignment by Lovász
Local Lemma.

2

The Moser-Tardos Algorithm

start with a random assignment for P

while there exists a violated event

re-sample the variables of an arbitrary violated event A

Theorem 1 (Moser, Tardos’09). If LLL conditions are satisfied, then this al-
gorithm finds a good assignment and the expected number of re-samplings is at
most ∑

A

x(A)

1− x(A)

The size of the problem is usually poly(n), so if m = |A| is super-polynomial
in n, then the bound on the expected running time is not polynomial. However,

Theorem 2 (3.1). We have
∑
A∈A x(A) ≤ n log(1/δ) so the expected number

of re-samplings of the MT-algorithm is at most(∑
A∈A

x(A)

)(
max
A∈A

1

1− x(A)

)
≤
(
n log

1

δ

)(
max
A∈A

1

1− x(A)

)
.

Remarks:

• log(1/δ) = O(n log n) in all known applications. In fact minA∈APr(A) ≤
δ.

• In all known applications, all x(A)’s are at least 1/2 and so maxA∈A
1

1−x(A) ≤
2.

• The
∑
A∈A x(A) ≤ n log 1

δ bound is tight asymptotically, but the δ is
usually not that small.

Although this is a good bound on running time (polynomial in all known ap-
plications), still if there are super-polynomially many events, finding a violated
event might require super-polynomial time. If the set of bad events is efficiently
verifiable, however, we find a polynomial algorithm.

3

Acyclic Edge Colouring
Definition. A colouring of the edges of a graph is acyclic, if incident edges
get different colours, and among the edges of every cycle at least three different
colours appear. Let a(H) be the minimum number of colours needed for an
acyclic edge colouring of a graph H.

Theorem 3 (Molloy, Reed’98). a(H) ≤ 16∆(H).

Proof. Set C := 16∆ and colour each edge of H randomly using one of the
colours 1, 2, . . . , C. A type 1 (bad) event corresponds to two incident edges
getting the same colour, and a type k (bad) event corresponds to a cycle of
length 2k to get at most two colours. Each type k event depends on at most
4k∆ type 1 events, and at most 2k∆2(l−1) type l events for every l > 1. Set
x(A) := (2/C)2(k−1) for all events A of type k ≥ 1. Then the probability of an
event of type k is at most

2
C

2

−2(k−1)

≤(
2

C
)2(k−1)e−k

∏
l>1

(
e−4(1/8)2(l−1)

)
=(

2

C
)2(k−1)(e−

4
C)4k∆

∏
l>1

(
e−2(2

C)2(l−1)
)2k∆2(l−1)

≤(
2

C
)2(k−1)(1− 2

C
)4k∆

∏
l>1

(
1− (

2

C
)2(l−1)

)2k∆2(l−1)

=xk(1− x1)4k∆
∏
l>1

(1− xl)2k∆2(l−1)

and so LLL conditions are satisfied. Therefore by Lovász Local Lemma, an
acyclic edge colouring exists for H that uses 16∆(H) colours.

Theorem 4 (7.1). There is a randomized algorithm that produces an acyclic
edge colouring of any graph in expected polynomial time using 16∆ colours.

Proof. We will use Theorem 2. We have δ ≥ min Pr(A) ≥ C−2n so log(1/δ) =
O(n log ∆). Also the set of bad events is efficiently verifiable: Violated type
1 bad events are easy to detect, and to find a violated event of type k > 1,
consider the subgraph induced on every pair of colours and check if it has a
cycle.

For graphs with girth Ω(∆ log ∆) we have a(H) ≤ ∆(H) + 2 and an acyclic
edge colouring can be found using the same idea in expected polynomial time.
It has been conjectured that a(H) ≤ ∆(H) + 2 holds for all graphs H.

4

The MT-algorithm’s Output’s Distribution

Theorem 5 (2.2). Assume that LLL conditions hold. For any event B that is
determined by P, the probability that the output of MT-algorithm violates B is
at most

Pr(B)
∏

C∈ΓA(B)

(1− x(C))
−1

Remark. The same upper bound holds for Pr(B|no A ∈ A happen).

Theorem 6 (3.4). Assume that log 1
δ ≤ n

a for some fixed a. Suppose that there
is a constant ε ∈ (0, 1) and a function x : A → (0, 1−ε) such that for all A ∈ A,

Pr(A)1−ε ≤ x(A)
∏

B∈ΓA(A)

(1− x(B)).

Then for any c there exists an expected polynomial time Monte Carlo algorithm
that returns a good assignment with probability at least 1− n−c.

Proof. For all events A,

Pr(A) ≤ Pr(A)1−ε ≤ x(A) < 1− ε

so Pr(A)ε ≤ 1 and in fact Pr(A) ≤ x(A)
∏
B∈Γ(A)(1−x(B)). That is, A satisfies

LLL conditions.
Let p := n

c−a−1
ε and A′ := {A : Pr(A) ≥ p}. By Theorem 2,

∑
x(A) ≤

n log(1/δ) so |A′| ≤ n log(1/δ)/p = poly(n). Thus A′ is efficiently verifiable
and satisfies LLL conditions, hence a good assignment for A′ can be found in
expected polynomial time using the MT-algorithm.

For an output of the MT-algorithm, the probability of violating an event in
A−A′ is bounded from above by∑
B∈A−A′

Pr(B)
∏

C∈ΓA′ (B)

(1− x(C))−1 ≤
∑

B∈A−A′
pεPr(B)1−ε

∏
C∈ΓA′ (B)

(1− x(C))−1

≤pε
∑

B∈A−A′
x(B) ≤ pεn log(

1

δ
) ≤ n−c

using union bound and Theorem 6.

5

Non-repetitive Coloring of Graphs
Definition. Let H be a graph and c : V (H) → {1, . . . , C} be a colouring of
its vertices. Colouring c is called non-repetitive if for every k ≥ 1 and every
path v1v2 . . . v2k in H, there exists an index i with c(vi) 6= c(vi+k). That is, the
sequence of the colours appearing in this path, is not of the form xx for some
sequence x of length k. The minimum C for which such a colouring possible is
denoted by π(H).

Theorem 7 (Alon, Grytczuk, Haluszczak, Riordan’02).

π(H) ≤ C := d2e16∆(H)2e.

Proof. Colour the vertices independently and randomly using one of the colours
1, 2, . . . , C. Every path of length 2i corresponds to a bad event, which we call
an event of type i, whose probability is C−i. A path of length 2i intersects at
most 4ij∆2j paths of length 2j. For an event A of type i, set x(A) := (2∆2)−i.
The probability of an event of type i is

(2e16∆2)−i ≤ 1

2i∆2i

∏
j>1

(e−8i)j/2
j

= xi
∏
j>1

e−2xj×4ij∆2j

≤ xi
∏
j>1

(1− xj)4ij∆2j

,

which shows that LLL conditions hold, thus there exists a non-repetitive colour-
ing using C colours.

Theorem 8 (5.2). For any fixed ε ∈ (0, 1), the above argument can be turned
into an expected polynomial algorithm, which produces a non-repetitive colouring

using C ′ := C
1

1−ε colours with high probability.

Proof. The conditions of Theorem 6 are satisfied as

C ′−i
(1−ε)

= C−i ≤ xi
∏
j>1

(1− xj)4ij∆2j

,

and also
δ ≥ min Pr(A) ≥ C ′−n = ∆−

2
1−εn

shows that log(1/δ) = O(n log ∆) and we are done (by putting e.g. c=1).

6

Two More Applications
The Santa Claus Problem:

• There are n items to be distributed among m persons.

• Each item j has value pj .

• Each player either likes item j or does not like it, and its utility is the sum
of the values of the liked obtained items.

• We want to maximize the minimum utility of the players.

• The problem is NP-hard and has no better than 1/2-approximation.

• An LP relaxation was considered and resulted in anO(log log logm/ log logm)-
approximation algorithm (Bansal, Sviridenko’06).

• Two years later Feige proved using Lovász Local Lemma that the inte-
grality gap is constant.

• Theorem 6 provides a randomized algorithm with a constant approxima-
tion ratio.

Constructive Lower Bounds For Ramsey Numbers:

• Some of the lower bounds for Ramsey numbers use Lovász Local Lemma.

• Theorem 6 provides constructive lower bounds for those Ramsey numbers.

7

Violating Few Bad Events - An Example

Theorem 9 (8.1). Assume that F is a k-CNF formula with n variables and m
clauses, and there exists F ′ ⊆ F such that

(i) every clause in F ′ shares variables with at most 2k/e − 1 clauses in F ′,
and

(ii) every clause in F − F ′ shares variables with at most γ(2k/e − 1) many
clauses in F ′, for some γ ≥ 0.

Then for any θ = 1/poly(m,n), there exists a randomized poly(n,m)-time algo-
rithm that produces, with high probability, an assignments in which all clauses
in F ′ are satisfied, and at most a (1 + θ)2−keγ fraction of clauses from F −F ′
are unsatisfied.

Proof. Every clause corresponds to a bad event A. Setting x(A) = e/2k for all
A ∈ F ′ shows that LLL conditions hold for F ′. Run the MT-algorithm on F ′
for nc times its expected running time. It will finish with probability 1 − n−c,
and by Theorem 5 the probability that a clause in F − F ′ is not satisfied is at
most

2−k(1− e/2k)−γ(2k/e−1) ≤ eγ2−k.

Thus the expected fraction of unsatisfied clauses is at most eγ2−k. The proba-
bility that more than (1+θ)2−keγ fraction of clauses from F−F ′ are unsatisfied
is at most (1

1+θ). Repeating this process for a suitably large number of times
gives you a satisfying assignment with arbitrarily small failure probability.

8

Violating Few Bad Events - A General Theorem

Theorem 10 (8.3). Let 1 < α < e be fixed. Assume that the probability of
every A ∈ A is at most p = o(1) and the maximum degree in the dependency
graph GA is at most d = α(1/(ep) − 1). Then there exists an assignment that
violates at most (1 + o(1))mpe ln(α)/α events.

Proof. Let A′ be a random subset obtained by choosing each A ∈ A with proba-
bility 1− lnα. Delete those events that have more than d(1− lnα) neighbours in
A′. By Chernoff’s bound, with high probability |A′| = (1−o(1))m(1−lnα), and
just a o(p) fraction of events has been deleted from A. By putting x(A) = 1/d
for all A ∈ A′ and verifying that

p ≤ 1

d
(1− 1

d
)d(1−lnα),

one sees that A′ satisfies LLL conditions, so there exists an assignment with no
violated A ∈ A′.

The probability that an undeleted B ∈ A−A′ is violated is at most

p(1− 1

d
)−d(1−lnα)

by Theorem 5. So the expected number of total violated events is at most

o(p) + ((1 + o(1))(lnα)m)

(
p(1− 1

d
)−d(1−lnα)

)
≤ (1 + o(1))mpe ln(α)/α

with high probability. Hence there exists an assignment with at most this many
violated events.

Remarks:

• If there is no bound on the maximum degree, then by linearity of expec-
tation it can be checked that there exists an assignment violating at most
mp events, and if e > α then there are examples in which it is not possible
to violate less than mp events.

• If α ≤ 1 then Lovász Local Lemma can be used directly on A to show
that there is an assignment with no violated event.

• If A is efficiently verifiable, then this proof can be made into an expected
polynomial time algorithm by generating A′ explicitly and executing the
MT-algorithm on it. (the expected running-time of the MT-algorithm
will be bounded by O(n2 log d) by Theorem 2.) The expected number of
violated events in the output would be the same.

9

