The Setup
V ={1,2,...,n} is a set of elements, also called points.

S ={51,5,...,5,} is a family of m subsets of V.

vy, ..., U, € R" are the indicator vectors for the sets.

A complete colouring is a function y : V- — {—1,+1}.

A partial colouring is a function x : V — [—1,+1].

The discrepancy of a S; is disc(S)) = | Xoieq, X(4)] = [{X; v;)|-
The discrepancy of a colouring y is

X(5) = max{disc(S) : S € S} = max{|(x,v;)| : j=1,...,m}.

The discrepancy of a set system (V,S) is the minimum discrepancy
of a complete colouring of it.



Problem. Find upper bounds for discrepancy.

Results:

existential

algorithmic

algorithmic

random colouring

0 (vTogm)

0 (vnTogm)

General Setting

o )

O (v/nlog 2)

o ()

Spencer’85 Bansal’10 this paper
Maximum Degree d | O (\/dlog n) O (\/c_ilog n> O (\/Elog n)
Banaszczyk’98 Bansal'10 this paper

Inapproximability of Discrepancy: Charikar, Newman and Nikolov proved
that there are systems with m = O(n) sets, such that no polynomial algorithm
can distinguish whether the discrepancy is 0 or Q(y/n), unless P = NP.




Theorem 1. Let m > n. There is a randomized algorithm with running time
O((m+n)?log® (mn)) that with probability at least 1/2 constructs a (complete)

colouring with discrepancy 131/nlog,(2m/n).
The Partial Colouring Lemma. Let m > n, vy,...,v,, € R™, and zg €
[—1,1]™. Let ¢1,...,¢y > 0 be such that

Z exp(—c?/lG) <n/16
j=1

Let § € (0,0.1) be some approximation parameter. There exists a randomized
algorithm with running time poly(m,n,1/4) that with probability > 0.1 finds a
point = € [—1,1]™ such that

L [(z = wo,v5)| < ¢5lvsla
2. |x;] > 1 — ¢ for at least n/2 indices i € [n].

Proof of Theorem 1. Let § = 1/n and a(m,n) = 8y/log(2m/n), and xy = 0™.
Note mexp (—a(m,n)?/16) < n/16, so with probability at least 0.1 we find
xr € [—1, 1]” with

Vi [(vj, 21)| < a(m,n)vV/n, i s |(@1)il > 16} >n/2

Repeat logn times to get sufficiently large success probability.

Assume that n; points have not been coloured, let 1 € R™ be the vector of
uncoloured points. Apply theorem again for the new vectors vf,..., v}, € R™
to get another vector z5 € [—1,1]™ such that

Vi (o)l < almonn)yar, i ()il > 1— 6} > n/2

Repeat this 21logn times until all points have been coloured and you get a vector
x € R™. Then |z;| > 1 —4 for all i € [n], and for each j € [m],

[(vj, )| < Vvna(m,n) + /nia(m,ny) +--- =0 ( nlog(?m/n))

An outline of the algorithm ...
BREAK !!



(I) Let N(u,0?) denote Gaussian distribution with mean y and variance o2.

(I) If Gy ~ N(u1,0?) and Go ~ N(p2,03) then
t1G1 + toGg ~ N(tlﬂl + topta, t%(f% + t%d%)
(ITI) Let V' C R™ be a linear subspace, and {v1,...,v4} be an orthonormal

basis for it, and Gy, ...,G4 ~ N(0,1) be independent. Then G = Gyv; +
-+« + Gqvq is distributed as N (V).

(IV) If G ~ N(V), then for any u € R"™ we have (G,u) ~ N(0,02), with
o < |lufl.

(V) If G ~ N(V), then E[||G||?] = dim(V).
(VI) Let H ~ N(0,1). For all A > 0, Pr[|H| > \] < 2exp(—)\?/2).

(VII) Let Xi,..., X7 be random variables, and Yi,...,Yr be random vari-
ables such that Y; is a function of X;. Suppose that for all x1,...,x;_1,
Yi[(X1 =x1,...,X;—1 = x;—1) is Gaussian with mean zero and variance
at most one (possible depending on z1,...,2;-1). Then for any A > 0,

Pri|Yy+ -+ Yp| > \] < 2exp()\*/2T7)



Write down the algorithm from the article.
Observations.

1. Polynomial running time.
and C*

disc

Claim 1. With high probability, X°,..., X7 € P.

2. Ct

o are increasing, in particular, dim(Vr) = min{dim(V1), ..., dim(Vr)}.

Proof. Let E! be the event that at time ¢t we go out of P for the first time. If E*
happens then we must have [{X?—X*=1 w)| > § for some w € {e1,...,€n,V1,...,0m}
But (U, w) ~ N(0,0?) for some o < ||w|| = 1 by (IV). So by (VI),

Pr{E,] < 2exp(—(6/7)2/2) = 2 (v/mn)"?
By union bound,

Pr[3i: X" ¢ P] < T x (2m) x 2 (v/mn)c/2 =o(1)

Proof Intuition : We have
Céisc + Cf)ar + dzm(Vt) Z n

Claim 2. Claim 14 from the article.
Claim 3. E[| X7T|J?] < n.

Proof. Fix some i € [n]. If i ¢ CL . then E[|X7T]|?] < 1. Let t be the the first

var
time variable | X}| > 1, condition on X*~1.

Bl(X})?’] = E[(X] "+ U = (X[ +°E[(Uf))] < 1-6+4° <1
by (IV). O
Claim 4. Claim 16 from the article.

Proof of The Partial Colouring Lemma. By Claim 4 and since Co, < n, P[|CL | >
n/2] > 0.12. The probability that we go out of P is < 0.1 by Claim 1. Hence
with probability 0.1 we colour at least half of the points and do not go out of

P. O



