
The Setup

V = {1, 2, . . . , n} is a set of elements, also called points.

S = {S1, S2, . . . , Sm} is a family of m subsets of V .

v1, . . . , vm ∈ Rn are the indicator vectors for the sets.

A complete colouring is a function χ : V → {−1,+1}.

A partial colouring is a function χ : V → [−1,+1].

The discrepancy of a Sj is disc(Sj) = |
∑

i∈Sj
χ(i)| = |〈χ, vj〉|.

The discrepancy of a colouring χ is

χ(S) = max{disc(S) : S ∈ S} = max{|〈χ, vj〉| : j = 1, . . . ,m}.

The discrepancy of a set system (V,S) is the minimum discrepancy
of a complete colouring of it.
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Problem. Find upper bounds for discrepancy.
Results:
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Spencer’85 Bansal’10 this paper
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Banaszczyk’98 Bansal’10 this paper

Inapproximability of Discrepancy: Charikar, Newman and Nikolov proved
that there are systems with m = O(n) sets, such that no polynomial algorithm
can distinguish whether the discrepancy is 0 or Ω(

√
n), unless P = NP .
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Theorem 1. Let m ≥ n. There is a randomized algorithm with running time
O((m+n)3 log5(mn)) that with probability at least 1/2 constructs a (complete)
colouring with discrepancy 13

√
n log2(2m/n).

The Partial Colouring Lemma. Let m ≥ n, v1, . . . , vm ∈ Rn, and x0 ∈
[−1, 1]n. Let c1, . . . , cm ≥ 0 be such that

m∑
j=1

exp(−c2j/16) ≤ n/16

Let δ ∈ (0, 0.1) be some approximation parameter. There exists a randomized
algorithm with running time poly(m,n, 1/δ) that with probability ≥ 0.1 finds a
point x ∈ [−1, 1]n such that

1. |〈x− x0, vj〉| ≤ cj‖vj‖2

2. |xi| ≥ 1− δ for at least n/2 indices i ∈ [n].

Proof of Theorem 1. Let δ = 1/n and α(m,n) = 8
√

log(2m/n), and x0 = 0n.
Note m exp

(
−α(m,n)2/16

)
≤ n/16, so with probability at least 0.1 we find

x1 ∈ [−1, 1]n with

∀j |〈vj , x1〉| ≤ α(m,n)
√
n, |{i : |(x1)i| ≥ 1− δ}| ≥ n/2

Repeat log n times to get sufficiently large success probability.
Assume that n1 points have not been coloured, let x1 ∈ Rn1 be the vector of

uncoloured points. Apply theorem again for the new vectors v′1, . . . , v
′
m ∈ Rn1

to get another vector x2 ∈ [−1, 1]n1 such that

∀j |〈v′j , x2〉| ≤ α(m,n1)
√
n1, |{i : |(x2)i| ≥ 1− δ}| ≥ n1/2

Repeat this 2 log n times until all points have been coloured and you get a vector
x ∈ Rn. Then |xi| ≥ 1− δ for all i ∈ [n], and for each j ∈ [m],

|〈vj , x〉| ≤
√
nα(m,n) +

√
n1α(m,n1) + · · · = O

(√
n log(2m/n)

)

An outline of the algorithm ...
BREAK !!
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(I) Let N(µ, σ2) denote Gaussian distribution with mean µ and variance σ2.

(II) If G1 ∼ N(µ1, σ
2
1) and G2 ∼ N(µ2, σ

2
2) then

t1G1 + t2G2 ∼ N(t1µ1 + t2µ2, t
2
1σ

2
1 + t22σ

2
2)

(III) Let V ⊆ Rn be a linear subspace, and {v1, . . . , vd} be an orthonormal
basis for it, and G1, . . . , Gd ∼ N(0, 1) be independent. Then G = G1v1 +
· · ·+Gdvd is distributed as N(V ).

(IV) If G ∼ N(V ), then for any u ∈ Rn we have 〈G, u〉 ∼ N(0, σ2), with
σ ≤ ‖u‖.

(V) If G ∼ N(V ), then E[‖G‖2] = dim(V ).

(VI) Let H ∼ N(0, 1). For all λ > 0, Pr[|H| ≥ λ] ≤ 2 exp(−λ2/2).

(VII) Let X1, . . . , XT be random variables, and Y1, . . . , YT be random vari-
ables such that Yi is a function of Xi. Suppose that for all x1, . . . , xi−1,
Yi|(X1 = x1, . . . , Xi−1 = xi−1) is Gaussian with mean zero and variance
at most one (possible depending on x1, . . . , xi−1). Then for any λ > 0,

Pr[|Y1 + · · ·+ YT | ≥ λ] ≤ 2 exp(λ2/2T 2)
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Write down the algorithm from the article.
Observations.

1. Polynomial running time.

2. Ct
var and Ct

disc are increasing, in particular, dim(VT ) = min{dim(V1), . . . , dim(VT )}.

Claim 1. With high probability, X0, . . . , XT ∈ P .

Proof. Let Et be the event that at time t we go out of P for the first time. If Et

happens then we must have |〈Xt−Xt−1, w〉| ≥ δ for some w ∈ {e1, . . . , en, v1, . . . , vm}.
But 〈U t, w〉 ∼ N(0, σ2) for some σ ≤ ‖w‖ = 1 by (IV). So by (VI),

Pr[Et] ≤ 2 exp(−(δ/γ)2/2) = 2 (γ/mn)
C/2

By union bound,

Pr[∃i : Xi /∈ P ] ≤ T × (2m)× 2 (γ/mn)
C/2

= o(1)

Proof Intuition : We have

Ct
disc + Ct

var + dim(V t) ≥ n

Claim 2. Claim 14 from the article.
Claim 3. E[‖XT ‖2] ≤ n.

Proof. Fix some i ∈ [n]. If i /∈ CT
var then E[‖XT ‖2] ≤ 1. Let t be the the first

time variable |Xt
i | > 1, condition on Xt−1.

E[(Xt
i )

2] = E[(Xt−1
i + γU t

i )2] = (Xt−1
i )2 + γ2E[(U t

i )2] ≤ 1− δ + γ2 ≤ 1

by (IV).

Claim 4. Claim 16 from the article.

Proof of The Partial Colouring Lemma. By Claim 4 and since Cvar ≤ n, P [|CT
var| ≥

n/2] ≥ 0.12. The probability that we go out of P is < 0.1 by Claim 1. Hence
with probability 0.1 we colour at least half of the points and do not go out of
P .
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