The Setup

 $V = \{1, 2, \dots, n\} \text{ is a set of elements, also called points.}$ $S = \{S_1, S_2, \dots, S_m\} \text{ is a family of } m \text{ subsets of } V.$ $v_1, \dots, v_m \in \mathbb{R}^n \text{ are the indicator vectors for the sets.}$ A complete colouring is a function $\chi : V \to \{-1, +1\}.$ A partial colouring is a function $\chi : V \to \{-1, +1\}.$ The discrepancy of a S_j is $\operatorname{disc}(S_j) = |\sum_{i \in S_j} \chi(i)| = |\langle \chi, v_j \rangle|.$ The discrepancy of a colouring χ is $\chi(S) = \max\{\operatorname{disc}(S) : S \in S\} = \max\{|\langle \chi, v_j \rangle| : j = 1, \dots, m\}.$

The *discrepancy* of a set system (V, S) is the minimum discrepancy of a complete colouring of it.

	existential	algorithmic	algorithmic
random colouring	$O\left(\sqrt{n\log m}\right)$	$O\left(\sqrt{n\log m}\right)$	
General Setting	$O\left(\sqrt{n\log\frac{2m}{n}}\right)$	$O\left(\sqrt{n}\log\frac{2m}{n}\right)$	$O\left(\sqrt{n\log\frac{2m}{n}}\right)$
	Spencer'85	Bansal'10	this paper
Maximum Degree d	$O\left(\sqrt{d\log n}\right)$	$O\left(\sqrt{d}\log n\right)$	$O\left(\sqrt{d}\log n\right)$
	Banaszczyk'98	Bansal'10	this paper

Problem. Find upper bounds for discrepancy.

Results:

Inapproximability of Discrepancy: Charikar, Newman and Nikolov proved that there are systems with m = O(n) sets, such that no polynomial algorithm can distinguish whether the discrepancy is 0 or $\Omega(\sqrt{n})$, unless P = NP. **Theorem 1.** Let $m \ge n$. There is a randomized algorithm with running time $O((m+n)^3 \log^5(mn))$ that with probability at least 1/2 constructs a (complete) colouring with discrepancy $13\sqrt{n \log_2(2m/n)}$.

The Partial Colouring Lemma. Let $m \ge n, v_1, \ldots, v_m \in \mathbb{R}^n$, and $x_0 \in [-1,1]^n$. Let $c_1, \ldots, c_m \ge 0$ be such that

$$\sum_{j=1}^{m} \exp(-c_j^2/16) \le n/16$$

Let $\delta \in (0, 0.1)$ be some approximation parameter. There exists a randomized algorithm with running time $poly(m, n, 1/\delta)$ that with probability ≥ 0.1 finds a point $x \in [-1, 1]^n$ such that

- 1. $|\langle x x_0, v_j \rangle| \le c_j ||v_j||_2$
- 2. $|x_i| \ge 1 \delta$ for at least n/2 indices $i \in [n]$.

Proof of Theorem 1. Let $\delta = 1/n$ and $\alpha(m,n) = 8\sqrt{\log(2m/n)}$, and $x_0 = 0^n$. Note $m \exp\left(-\alpha(m,n)^2/16\right) \le n/16$, so with probability at least 0.1 we find $x_1 \in [-1,1]^n$ with

$$\forall j \ |\langle v_j, x_1 \rangle| \le \alpha(m, n)\sqrt{n}, \qquad |\{i : |(x_1)_i| \ge 1 - \delta\}| \ge n/2$$

Repeat $\log n$ times to get sufficiently large success probability.

Assume that n_1 points have not been coloured, let $x_1 \in \mathbb{R}^{n_1}$ be the vector of uncoloured points. Apply theorem again for the new vectors $v'_1, \ldots, v'_m \in \mathbb{R}^{n_1}$ to get another vector $x_2 \in [-1, 1]^{n_1}$ such that

$$\forall j |\langle v'_i, x_2 \rangle| \le \alpha(m, n_1) \sqrt{n_1}, \qquad |\{i : |(x_2)_i| \ge 1 - \delta\}| \ge n_1/2$$

Repeat this $2 \log n$ times until all points have been coloured and you get a vector $x \in \mathbb{R}^n$. Then $|x_i| \ge 1 - \delta$ for all $i \in [n]$, and for each $j \in [m]$,

$$|\langle v_j, x \rangle| \le \sqrt{n} \alpha(m, n) + \sqrt{n_1} \alpha(m, n_1) + \dots = O\left(\sqrt{n \log(2m/n)}\right)$$

An outline of the algorithm ... BREAK !!

- (I) Let $N(\mu, \sigma^2)$ denote Gaussian distribution with mean μ and variance σ^2 .
- (II) If $G_1 \sim N(\mu_1, \sigma_1^2)$ and $G_2 \sim N(\mu_2, \sigma_2^2)$ then

 $t_1G_1 + t_2G_2 \sim N(t_1\mu_1 + t_2\mu_2, t_1^2\sigma_1^2 + t_2^2\sigma_2^2)$

- (III) Let $V \subseteq \mathbb{R}^n$ be a linear subspace, and $\{v_1, \ldots, v_d\}$ be an orthonormal basis for it, and $G_1, \ldots, G_d \sim N(0, 1)$ be independent. Then $G = G_1v_1 + \cdots + G_dv_d$ is distributed as N(V).
- (IV) If $G \sim N(V)$, then for any $u \in \mathbb{R}^n$ we have $\langle G, u \rangle \sim N(0, \sigma^2)$, with $\sigma \leq ||u||$.
- (V) If $G \sim N(V)$, then $E[||G||^2] = dim(V)$.
- (VI) Let $H \sim N(0, 1)$. For all $\lambda > 0$, $Pr[|H| \ge \lambda] \le 2\exp(-\lambda^2/2)$.
- (VII) Let X_1, \ldots, X_T be random variables, and Y_1, \ldots, Y_T be random variables such that Y_i is a function of X_i . Suppose that for all x_1, \ldots, x_{i-1} , $Y_i|(X_1 = x_1, \ldots, X_{i-1} = x_{i-1})$ is Gaussian with mean zero and variance at most one (possible depending on x_1, \ldots, x_{i-1}). Then for any $\lambda > 0$,

 $Pr[|Y_1 + \dots + Y_T| \ge \lambda] \le 2\exp(\lambda^2/2T^2)$

Write down the algorithm from the article. Observations.

- 1. Polynomial running time.
- 2. C_{var}^t and C_{disc}^t are increasing, in particular, $dim(V_T) = \min\{dim(V_1), \ldots, dim(V_T)\}$.

Claim 1. With high probability, $X^0, \ldots, X^T \in P$.

Proof. Let E^t be the event that at time t we go out of P for the first time. If E^t happens then we must have $|\langle X^t - X^{t-1}, w \rangle| \ge \delta$ for some $w \in \{e_1, \dots, e_n, v_1, \dots, v_m\}$. But $\langle U^t, w \rangle \sim N(0, \sigma^2)$ for some $\sigma \leq ||w|| = 1$ by (IV). So by (VI),

$$Pr[E_t] \le 2 \exp(-(\delta/\gamma)^2/2) = 2 (\gamma/mn)^{C/2}$$

By union bound,

$$Pr[\exists i: X^i \notin P] \le T \times (2m) \times 2 (\gamma/mn)^{C/2} = o(1)$$

Proof Intuition : We have

$$C_{disc}^t + C_{var}^t + \dim(V^t) \ge n$$

Claim 2. Claim 14 from the article. Claim 3. $E[||X^T||^2] \le n$.

Proof. Fix some $i \in [n]$. If $i \notin C_{var}^T$ then $E[||X^T||^2] \leq 1$. Let t be the first time variable $|X_i^t| > 1$, condition on X^{t-1} .

$$E[(X_i^t)^2] = E[(X_i^{t-1} + \gamma U_i^t)^2] = (X_i^{t-1})^2 + \gamma^2 E[(U_i^t)^2] \le 1 - \delta + \gamma^2 \le 1$$

(IV).

by (IV).

Claim 4. Claim 16 from the article.

Proof of The Partial Colouring Lemma. By Claim 4 and since $C_{var} \leq n, P[|C_{var}^T| \geq$ $n/2 \ge 0.12$. The probability that we go out of P is < 0.1 by Claim 1. Hence with probability 0.1 we colour at least half of the points and do not go out of P.