
This is a summary of the talk I gave on July 26th of 2011 in University of
Waterloo. The aim is to describe two of the three main results of the paper

Constructive Algorithms for Discrepancy Minimization, by Nikhil
Bansal (FOCS’10).

The results presented are indicated as (2) and (3) in the abstract of the paper.
Abbas Mehrabian

The Setup

V = {1, 2, . . . , n} is a set of elements, also called points.

S = {S1, S2, . . . , Sm} is a family of m subsets of V .

The maximum degree, d, is the maximum number of times an ele-
ment appears in sets.

A complete colouring is a function χ : V → {−1,+1}.

A partial colouring is a function χ : V → [−1,+1].

The discrepancy of a set S is disc(S) = |
∑

i∈S χ(i)|.

The discrepancy of a colouring χ is max{disc(S) : S ∈ S}.

The discrepancy of a set system (V,S) is the minimum possible
discrepancy of a complete colouring of it.

The hereditary discrepancy of a set system (V,S), λ, is the maxi-
mum, over all W ⊆ V , of the discrepancy of the set system

(W, {S ∩W : S ∈ S}).

A Martingale Tail Bound. Let 0 = X0, X1, . . . , Xn be a martingale with
increments Yi = Xi −Xi−1. That is, for 1 ≤ i ≤ n,

E [Yi|X0, X1, X2, . . . , Xi−1] = 0.

Suppose that for 1 ≤ i ≤ n, Yi|(X0, X1, . . . , Xi−1) is distributed as N(0, κ2i ),
where κi is determined by (X0, X1, . . . , Xi−1) and has absolute value at most
σ. Then for any α > 0,

Pr
[
|Xn| ≥ ασ

√
n
]
≤ 2 exp(−α2/2).

Additive Property of Gaussians. Let g ∈ Rn be a random Gaussian vector,
i.e. each coordinate is chosen independently according to distribution N(0, 1).
Then for any v ∈ Rn, the random variable < g, v > is distributed as N(0, ‖ v ‖22).
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Problem. Find upper bounds for discrepancy.
Results:

existential algorithmic

random colouring O
(√

n logm
)

O
(√

n logm
)

random colouring

Spencer’85 O
(√

n log 2m
n

)
O
(√

nlog 2m
n

)
this paper

Banaszczyk’98 O
(√

d log n
)

O
(√

d log n
)

this paper

by definition λ O (λ log(mn)) this paper

Inapproximability of Discrepancy: Charikar, Newman and Nikolov proved
that there are systems with m = O(n) sets, such that no polynomial algorithm
can distinguish whether the discrepancy is 0 or Ω(

√
n), unless P = NP .
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Theorem 1. There is a randomized polynomial algorithm that with probability
at least 1/2n constructs a complete colouring with discrepancy O(λ log(mn)).

Proof. The algorithm starts with a partial colouring, with all points coloured 0.
The colour of each point starts from 0, and changes over time, and becomes -1 or
1 at some moment during the execution of the algorithm. When this happens,
we say that the point is dead and its colour does not change. Otherwise, the
point is alive. Let At denote the set of alive points at time t. We denote the
colouring vector at time t by xt ∈ Rn, so x0 = (0, 0, . . . , 0) and xt(i) is the colour
of point i at time t. In this language, point i is alive at time t if xt(i) /∈ {−1, 1},
otherwise it is dead.

The algorithm is given in the next page (taken from the original paper).
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4.1 Algorithm

Initialize, x0(i) = 0 for all i ∈ [n]. Let s = 1/(4n(log(mn))1/2). Let ℓ = 8 log n/s2.

For each time stept = 1, 2, . . . , ℓ repeat the following:

1. Find a feasible solution to the following semidefinite program:

||
∑

i∈Sj

vi||22 ≤ λ2 for each setSj (4)

||vi||22 = 1 ∀i ∈ A(t− 1) (5)

||vi||22 = 0 ∀i /∈ A(t− 1) (6)

This SDP is feasible as settingvi ·vj = X (i)X (j), whereX is the minimum discrepancy coloring
of the set system restricted toA(t − 1) is a valid solution. Letvi ∈ R

n, i ∈ [n] denote some
arbitrary feasible solution to the SDP above.

2. Constructγt ∈ R
n as follows: Letg ∈ R

n be obtained by choosing each coordinateg(i) indepen-
dently from the distributionN (0, 1). For eachi ∈ [n], let γt(i) = s〈g, vi〉.
Updatext = xt−1 + γt.
If |xt(i)| > 1, for anyi, abort the algorithm.

3. For eachi, setxt(i) = 1 if xt(i) ≥ 1− 1/n or setxt(i) = −1 if xt(i) < −1 + 1/n.
UpdateA(t) accordingly.

Return the final coloringxℓ.

4.2 Analysis

We begin with some simple observations.

1. At each time stept, we have||vi||22 = 1 for eachi ∈ A(t − 1) and||vi||20 = 0 for i /∈ A(t − 1).
Thus, by lemma 2.1, conditioned oni ∈ A(t − 1), we haveγt(i) ∼ N(0, s2) for i ∈ A(t − 1)
andγt(i) = 0 otherwise. Similarly, conditioned on the evolution of the algorithm until t − 1,
the incrementγt(Sj) for Sj at time t is an unbiased Gaussian with variance at mosts2λ2 (the
precise value of the variance will depend onv(Sj) =

∑

i∈Sj :i∈A(t−1) vi, which depends on the
SDP solution at timet, which in turn depends on the evolution of the algorithm until time t − 1,
in particular on the set of alive variablesA(t− 1)).

2. The rounding in step 3 of the algorithm can effect the overall discrepancy by at mostn·(1/n) = 1,
as each variable is rounded up or down at most once and is nevermodified thereafter. Noteλ ≥ 1,
unless the set system is empty, so we will ignore the effect ofthis rounding step henceforth.

3. For the algorithm to abort in step 2 at timet, it is necessary thatγt(i) > 1/n = 4s(log n)1/2, as
step 3 ensures that|xt−1(i)| < 1−1/n. Sinceγt(i) is distributed asN(0, s2), this probability is at
mostexp (−8 lnmn) = (mn)−8. Since there at mostn variables and onlyℓ = O(n2 log2(mn))
time steps, by union bound the probability that the algorithm ever aborts due to this step is at most
1/(mn)4.

The following key lemma shows that the number of alive variables halves inO(1/s2) steps with
reasonable probability. The proof below follows a simpler presentation due to Joel Spencer.
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Observations:

1. The SDP is feasible in all iterations (follows from the definition of λ).

2. For an active point i, the increment in x(i) has distribution N(0, s2) (fol-
lows from additive property of Gaussians and constraint (5) of the SDP).

3. For a set S, the increment in x(S), which is defined as

γt(S) =
∑
i∈S

γt(i),

has distribution N(0, κ2) for some κ2 ≤ s2λ2 (follows from additive prop-
erty of Gaussians and constraint (4) of the SDP).

4. The rounding in step 3 effects the overall discrepancy by at most n×1/n =
1, so we ignore it in the analysis.

5. The probability that the algorithm aborts in some iteration in step 2 is at
most (mn)−4: If the algorithm aborts in step 2, we must have

γt(i) > 1/n = 4s
√

logmn.

γt(i) is distributed as N(0, s2) so the probability of this event is at most
exp(−8 log(mn)) = (mn)−8. There are n variables and l iterations, so
by the union bound the probability that the algorithm aborts in some
iteration in step 2 is at most (mn)−4.
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Lemma. Let y be a partial colouring with at most k alive variables. After
running the loop for 8/s2 times, with probability at least 3/4, the number of
alive variables is at most k/2.

Proof. Let u = 8/s2, yt be the colouring after t iterations, kt be the number of
alive variables after t iterations. Define

rt =

{ ∑
i yt(i)

2 if kt−1 ≥ k/2
rt−1 + s2k/2 otherwise.

Claim. For any yt−1, E[rt − rt−1|yt−1] ≥ s2k/2.

Proof of Claim. Clearly true for kt−1 < k/2. Otherwise

E[rt − rt−1|yt−1] = E[rt|yt−1]− rt−1

= E

[∑
i

(yt−1(i) + γt(i))
2|yt−1

]
−
∑
i

yt−1(i)2

=
∑
i

(
2yt−1E[γt(i)|yt−1] + E[γt(i)

2|yt−1]
)
≥ s2kt−1 ≥ s2k/2,

because γt(i) has mean 0 and variance s2, and kt−1 ≥ k/2.

The claim implies E[ru] ≥ us2k/2. For any t with kt ≥ k/2, we have
rt =

∑
i yt(i)

2 ≤ k. So ru ≤ k + us2k/2. Thus

us2k/2 ≤ E[ru] ≤ Pr[ku ≥ k/2]k + (1−Pr[ku ≥ k/2])(k + us2k/2),

hence Pr[ku ≥ k/2] ≤ k
us2k/2 = 1/4.

Corollary. After l = 8 log n/s2 iterations, with probability at least (3/4)logn ≥
1/n, all variables are dead.

6



Proof of Theorem 1. By the Corollary, with probability at least 1/n when the
algorithm finishes, x is a complete colouring. Let B denote the event that
there is a set with discrepancy more than 2

√
l logmnλs, and let Bj denote

the event that set Sj has discrepancy more than this. Note that xt(Sj) forms a
martingale, where each increment (conditional upon the history until time t−1)
is a Gaussian with mean 0 and variance at most λ2s2, so by the martingale tail
bound we have

Pr[Bj ] = Pr
[
|xl(Sj)| ≥ 2

√
logmn× λs

√
l
]
≤ 2 exp(−2 logmn) = 2(mn)−2.

Taking union bound over the m sets gives

Pr[B] ≤ 2

mn2
≤ 1

2n
.
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Theorem 2. Assume that every element is contained in at most d sets. There
is a randomized polynomial time algorithm that with probability at least 1/2n,
constructs a complete coloring with discrepancy O(

√
d log n).

Lemma[Srinivasan’97]. Assume that every element is contained in at most
d sets. There is a partial colouring χ : V → {−1, 0,+1} that assigns {−1,+1}
to at least half of the variables, whose discrepancy is at most c

√
d, for some

absolute constant c.
The proof of the lemma is based on a Lemma by Beck’81.

Proof of Theorem 2. The algorithm is pretty much the same as the one for
Theorem 1. However, the SDP is changed (see the next page, taken from the
original paper). The feasibility of the SDP follows from Srinivasan’s lemma.
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4.3 Constructive version of Srinivasan’s result

We prove theorem 1.2. Letn denote the number of elements, and letm denote the number of sets.
Since, each element lies in at mostt sets, we can assume thatm ≤ nt. The algorithm is essentially
identical to that in section 4. The only difference is that, at any stept in the algorithm, the entropy
method, as applied in [19], only guarantees us a partial coloring (instead of a complete coloring) of the
alive variablesA(t − 1) with discrepancyct1/2. So we modify the first step of the algorithm above as
follows:

Find a feasible solution to the following semidefinite program:

||
∑

i∈Sj

vi||22 ≤ c2t for each setSj (7)

∑

i∈A(t−1)

||vi||22 ≥ |A(t− 1)|/2 (8)

||vi||22 ≤ 1 ∀i ∈ A(t− 1) (9)

||vi||22 = 0 ∀i /∈ A(t− 1) (10)

The constantc is not stated explicitly in [19], but it can be calculated (infact our algorithm can do
a binary search onc do determine the smallest valuec for which the SDP has a feasible solution). This
program is feasible, asvi(1) = X (i), whereX is the partial coloring ofA(t−1) with discrepancyct1/2,
is a feasible solution.

The analysis is essentially identical to that in section 5. As in lemma 4.1, during16/s2 steps, the
number of alive variables reduces by a factor of 2, with probability at least1/2 (note that we have16/s2

steps above instead of8/s2 steps in Lemma 4.1, because of the partial coloring instead of complete
coloring ofA(t− 1)). Thus, there is a proper coloring with probability at least1/n at end of(16/s2) ·
log n steps. The expected discrepancy of each setS in this coloring is at mostt1/2(log n)1/2. As there
at mostnt sets, arguing as at the end of section 4.2, conditioned on obtaining a proper coloring at the
end, each set has discrepancy at mostO((t log n)1/2(log(nt))1/2) = O(t1/2 log n).

5 Constructive version of Spencer’s result

In this section we prove theorem 1.1. In fact, we will prove the more general guarantee forO(n1/2 log(2m/n))
for set systems withn elements andm sets, wherem ≥ n.

To show this, we will design an algorithmic subroutine with the following property.

Theorem 5.1. Let x ∈ [−1, 1]n be some fractional coloring with at mosta alive variables (i.e.i with
x(i) /∈ {−1,+1}). Then, there is an algorithm that with probability at least1/2, produces a fractional
coloring y ∈ [−1, 1]n with at mosta/2 alive variables, and the discrepancy of any set increases byat
mostO(a1/2 log(2m/a)).

Given theorem 5.1, the main result follows easily.

Lemma 5.2. The procedure in theorem 5.1 implies an algorithm to find a proper {−1,+1} color-
ing with discrepancyO(n1/2 log(2m/n)). Moreover, the algorithm succeeds with probability at least
1/(2 logm).

Proof. We start with the coloringx = (0, 0, . . . , 0), and apply theorem 5.1 forℓ = log logm steps. With
probability at least2−ℓ = 1/ logm, this gives a fractional coloringy with at mostn/2ℓ = n/ logm alive
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