This is a summary of the talk I gave on September 25th of 2013 in University
of Waterloo. The aim is to explain the paper: BASIC NETWORK CREATION
GAMES, by Alon, Demaine, Hajiaghayi and Leighton, SPAA 2010, SiDMa 2013.
Pictures below are taken from that paper.
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1. Network creation games
2. Nash equilibria

3. (*) A simple undirected graph is a sum (max) equilibrium graph if for
every edge xy and every non-edge xz, deleting xy and adding zz does
not decrease the total sum (maximum) of distances from z to all other
vertices.

4. Main ideas in this paper: remove the “creation cost”, considers swap
equilibria, so best response not NP-hard

5. (*) Parameter of study: Largest diameter of an equilibrium graph ... re-
lated to price of anarchy

6. (*) cost of vertex u: sum of distances from u to other vertices

7. m is the number of vertices, we consider connected graphs and all loga-
rithms are in base 2

KEEP ON BOARD(*)
SUM MAX
trees 2 3
general 3 < ... < 20Wleen) O\ /n)

Theorem 1. If a sum eq. graph is a tree, then the diameter < 3.

Proof. Consider a path of length 3, expressway, swapping, etc. o

A tree in max eq. with diameter 3. Three possible edges to add. Only aw
decreases the maximum distance of one of its endpoints, but it actually does
not!



A ©(y/n)-diameter max equilibrium graph

A diameter-3 sum equilibrium graph



Lemma 1. Let G = (V, E) be a graph, u,v,x € V with wv ¢ E. Assume that
adding edge uv to G decreases cost of u by s, where s > nd(z,u). Then adding
edge v to G decreases cost of x by at least s — nd(x,u).

Proof. For vertices a, b, let improve,(b) be the amount a gets closer to b by
adding av. Let d"““(a,b) be the distance between a and b in GUav. Let W be
the set of vertices w with improve,(w) > 0. For all w € W we have

improve, (w) = d(z, w) — 4" (z,w) >(d(u, w) — d(u,x)) — (1 + d(v,w))
=d(u,w) — (1 4+ d(v,w)) — d(u,x)

=improve, (w) — d(u, z).

Thus
Z improve, (w) > Z improve,, (w) > Z [improve, (w) — d(u, )]
weV weW weW
=s— |[W|d(u,x) > s — nd(u,x),
and the proof is complete. o

Theorem 2. All connected sum equilibrium graphs have diameter 20(V1ogn)
Let G = (V, E) be a sum equilibrium graph with diameter > 2logn + 2.
Claim 1. For each u € V there exists edge xy with d(u,z) < 1 4 logn whose

deletion increases cost of x by < 2n(1 + logn).

Proof of Claim 1. Consider BFS tree rooted at w from level 0 (just u) to level
1+ logn.
If there is a cross-edge xy, done.
WMA There is no cross-edge.
T, := subtree rooted at v.
ground := level 1+ logn
grounded vertex : a vertex with a descendent at ground
gd(v) := distance between v and ground.

If w is not grounded the diameter is < 2logn + 2, done.
WMA wu is grounded. We show this case is impossible!
Claim 1.1. If v # u is grounded then |T,| > 29¢("),

Proof of Claim 1.1. By induction on gd(v). Easy for gd(v) = 0. Assume v has
> 1 grounded children a and b. Then

Ty > 1+ |[To| + |Ty| > 1+ 2 x 294 = 1 4 299(v)

WMA v has 1 grounded child a so v is a cut vertex.
p := parent of v. If p swaps edge pv with pa, the change in its cost is:

—|T,| + |Ty| = |Tul >0



SO
IT,| > 2|T,| > 2 x 299(®) = 29d(v)

O

Let v be a grounded child of u. Then by Claim 1.1, |T,| > |T},| > 2!°8™, case
impossible! O

Claim 2. Let uwv ¢ E. Joining u and v decreases cost of u by < 6nlogn.

Proof. Suppose uv is a counterexample. Use Claim 1 to find zy. If x swaps
xy with zv, its cost increases by < 2n(1 4 logn) < 3nlogn (Claim 1); since
d(z,u) < 14 logn, its cost decreases by > 6nlogn — n(1 4+ logn) > 4nlogn
(Lemma 1). O

B(u, k) := set of vertices with distance at most k from u,
f(k) := minyey | B(u, k)|
Claim 3.

F(4k) zmin{" (k) }

27 24logn

Proof. Let uw € V and WMA B(u,4k) < n/2. Then B(u,3k) < n/2.

S := a maximal set of vertices at distance 3k from w such that the distance
between any pair of vertices in S is > 2k + 1.

For every v ¢ B(u, 3k), distance of v from some s € S is < d(u,v) — k.

So there exists sgp € S and A C V' \ B(u, 3k) so that |A| > n/2|S| and Va € A,
d(a, sp) < d(a,u) — k.

Joining u and sg decreases cost of u by > (k — 1)n/2|S| > kn/4|S].

This is < 6nlogn by Claim 2, so |S| > k/24logn.

Balls {B(s,k) : s € S} are disjoint and lie in B(u,4k), hence |B(u,4k)| >
kf(k)/24logn. O

Proof of Theorem 2.
f(QW) > oVicgn

because G is connected.
0 < ¢ := smallest integer for which f(2V°¢"47) > n/2. By Claim 3, for every
1< <o,
f(oVERgl)  gvEETgi-1
RSN
f(2Vlegngi=1) = 24logn

So, forall1 <i < o,

_ 9Q(Vogm)

f(2@4i) — 9Q(ivTogn)

But, since
F@V18477Y) < pj2 = gloEn

we have ¢ = O(y/Iogn). Since f(2V°8"49) > n/2. for any two vertices u and
v, the distance between u and v is at most

1492 x 9Vlesngo — 9O(VIogn)

)



O

The authors conjecture all sum equilibrium graphs have polylogarithmic
diameter.

A graph is e-distance-uniform if there exists r such that, for every vertex v,
the number of vertices at distance exactly r from v is > (1 — €)n.

Theorem 3. Let G be a sum equilibrium graph with n vertices and diameter
g > 2logn. Then there exists an ¢ > 0 and an e-distance-uniform graph G’ with
n vertices and diameter ©(eg/log® n).

Conjecture. Distance-uniform-graphs have logarithmic diameter.



