This is a summary of the talk I gave on September 25th of 2013 in University of Waterloo. The aim is to explain the paper: BASIC NETWORK CREATION GAMES, by Alon, Demaine, Hajiaghayi and Leighton, SPAA 2010, SiDMa 2013. Pictures below are taken from that paper.

Abbas Mehrabian

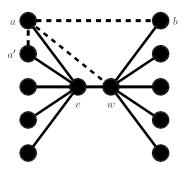
- 1. Network creation games
- 2. Nash equilibria
- 3. (*) A simple undirected graph is a sum (max) equilibrium graph if for every edge xy and every non-edge xz, deleting xy and adding xz does not decrease the total sum (maximum) of distances from x to all other vertices.
- 4. Main ideas in this paper: remove the "creation cost", considers swap equilibria, so best response not NP-hard
- 5. (*) Parameter of study: Largest diameter of an equilibrium graph ... related to price of anarchy
- 6. (*) cost of vertex u: sum of distances from u to other vertices
- 7. n is the number of vertices, we consider connected graphs and all logarithms are in base 2

KEEP ON BOARD(*)

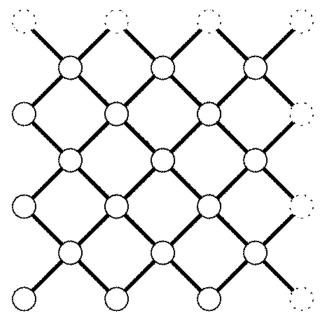
$$\begin{array}{ccc} & \text{SUM} & \text{MAX} \\ \text{trees} & 2 & 3 \\ \text{general} & 3 \leq \ldots \leq 2^{O(\sqrt{\log n})} & \Omega(\sqrt{n}) \end{array}$$

Theorem 1. If a sum eq. graph is a tree, then the diameter < 3.

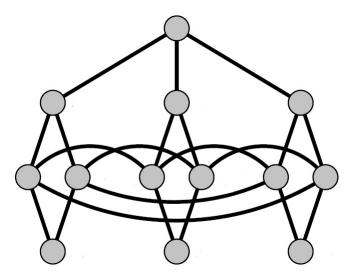
Proof. Consider a path of length 3, expressway, swapping, etc.



A tree in max eq. with diameter 3. Three possible edges to add. Only aw decreases the maximum distance of one of its endpoints, but it actually does not!



A $\Theta(\sqrt{n})\text{-diameter}$ max equilibrium graph



 ${\bf A}$ diameter-3 sum equilibrium graph

Lemma 1. Let G = (V, E) be a graph, $u, v, x \in V$ with $uv \notin E$. Assume that adding edge uv to G decreases cost of u by s, where $s > n \operatorname{d}(x, u)$. Then adding edge xv to G decreases cost of x by at least $s - n \operatorname{d}(x, u)$.

Proof. For vertices a, b, let $\operatorname{improve}_a(b)$ be the amount a gets closer to b by adding av. Let $\operatorname{d}^{new}(a, b)$ be the distance between a and b in $G \cup av$. Let W be the set of vertices w with $\operatorname{improve}_u(w) > 0$. For all $w \in W$ we have

$$\begin{split} \mathrm{improve}_x(w) &= \mathrm{d}(x,w) - \mathrm{d}^{new}(x,w) \geq &(\mathrm{d}(u,w) - \mathrm{d}(u,x)) - (1 + \mathrm{d}(v,w)) \\ &= \mathrm{d}(u,w) - (1 + \mathrm{d}(v,w)) - \mathrm{d}(u,x) \\ &= \mathrm{improve}_x(w) - \mathrm{d}(u,x). \end{split}$$

Thus

$$\begin{split} \sum_{w \in V} \mathrm{improve}_x(w) & \geq \sum_{w \in W} \mathrm{improve}_x(w) \geq \sum_{w \in W} [\mathrm{improve}_u(w) - \mathrm{d}(u, x)] \\ & = s - |W| \, \mathrm{d}(u, x) \geq s - n \, \mathrm{d}(u, x), \end{split}$$

and the proof is complete.

Theorem 2. All connected sum equilibrium graphs have diameter $2^{O(\sqrt{\log n})}$.

Let G = (V, E) be a sum equilibrium graph with diameter $> 2 \log n + 2$. Claim 1. For each $u \in V$ there exists edge xy with $d(u, x) \le 1 + \log n$ whose deletion increases cost of x by $\le 2n(1 + \log n)$.

Proof of Claim 1. Consider BFS tree rooted at u from level 0 (just u) to level $1 + \log n$.

If there is a cross-edge xy, done.

WMA There is no cross-edge.

 $T_v := \text{subtree rooted at } v.$

ground := level $1 + \log n$

grounded vertex: a vertex with a descendent at ground

gd(v) :=distance between v and ground.

If u is not grounded the diameter is $\leq 2 \log n + 2$, done.

WMA u is grounded. We show this case is impossible! Claim 1.1. If $v \neq u$ is grounded then $|T_v| \geq 2^{gd(v)}$.

Proof of Claim 1.1. By induction on gd(v). Easy for gd(v) = 0. Assume v has > 1 grounded children a and b. Then

$$|T_v| \ge 1 + |T_a| + |T_b| \ge 1 + 2 \times 2^{gd(a)} = 1 + 2^{gd(v)}$$

WMA v has 1 grounded child a so v is a cut vertex. p :=parent of v. If p swaps edge pv with pa, the change in its cost is:

$$-|T_a| + |T_v| - |T_a| \ge 0$$

$$|T_v| \ge 2|T_a| \ge 2 \times 2^{gd(a)} = 2^{gd(v)}$$

Let v be a grounded child of u. Then by Claim 1.1, $|T_u| > |T_v| \ge 2^{\log n}$, case impossible!

Claim 2. Let $uv \notin E$. Joining u and v decreases cost of u by $\leq 6n \log n$.

Proof. Suppose uv is a counterexample. Use Claim 1 to find xy. If x swaps xy with xv, its cost increases by $\leq 2n(1 + \log n) \leq 3n \log n$ (Claim 1); since $d(x, u) \le 1 + \log n$, its cost decreases by $\ge 6n \log n - n(1 + \log n) \ge 4n \log n$ (Lemma 1).

B(u, k) := set of vertices with distance at most k from u, $f(k) := \min_{u \in V} |B(u, k)|.$

Claim 3.

$$f(4k) \ge \min \left\{ \frac{n}{2}, \frac{kf(k)}{24 \log n} \right\}.$$

Proof. Let $u \in V$ and WMA B(u, 4k) < n/2. Then B(u, 3k) < n/2.

S := a maximal set of vertices at distance 3k from u such that the distance between any pair of vertices in S is $\geq 2k+1$.

For every $v \notin B(u, 3k)$, distance of v from some $s \in S$ is $\leq d(u, v) - k$.

So there exists $s_0 \in S$ and $A \subseteq V \setminus B(u,3k)$ so that $|A| \ge n/2|S|$ and $\forall a \in A$, $d(a, s_0) \le d(a, u) - k.$

Joining u and s_0 decreases cost of u by $\geq (k-1)n/2|S| \geq kn/4|S|$.

This is $\leq 6n \log n$ by Claim 2, so $|S| \geq k/24 \log n$.

This is \leq on $\log n$ by Claim 2, so $|\mathcal{C}_1| \leq n/2$ and $|\mathcal{C}_1| \leq n/2$ Balls $\{B(s,k): s \in S\}$ are disjoint and lie in |B(u,4k)|, hence $|B(u,4k)| \geq n/2$ $kf(k)/24\log n$.

Proof of Theorem 2.

$$f(2^{\sqrt{\log n}}) \ge 2^{\sqrt{\log n}}$$

because G is connected.

 $0 \le \sigma :=$ smallest integer for which $f(2^{\sqrt{\log n}}4^{\sigma}) \ge n/2$. By Claim 3, for every $1 \leq i < \sigma$,

$$\frac{f(2^{\sqrt{\log n}}4^i)}{f(2^{\sqrt{\log n}}4^{i-1})} \ge \frac{2^{\sqrt{\log n}}4^{i-1}}{24\log n} = 2^{\Omega(\sqrt{\log n})}.$$

So, for all $1 \leq i < \sigma$,

$$f(2^{\sqrt{\log n}}4^i) = 2^{\Omega(i\sqrt{\log n})}.$$

But, since

$$f(2^{\sqrt{\log n}}4^{\sigma-1}) \le n/2 = 2^{\log n - 1},$$

we have $\sigma = O(\sqrt{\log n})$. Since $f(2^{\sqrt{\log n}}4^{\sigma}) \ge n/2$. for any two vertices u and v, the distance between u and v is at most

$$1 + 2 \times 2^{\sqrt{\log n}} 4^{\sigma} = 2^{O(\sqrt{\log n})},$$

The authors conjecture all sum equilibrium graphs have polylogarithmic diameter.

A graph is ϵ -distance-uniform if there exists r such that, for every vertex v, the number of vertices at distance exactly r from v is $\geq (1 - \epsilon)n$.

Theorem 3. Let G be a sum equilibrium graph with n vertices and diameter $g > 2 \log n$. Then there exists an $\epsilon > 0$ and an ϵ -distance-uniform graph G' with n vertices and diameter $\Theta(\epsilon g/\log^2 n)$.

Conjecture. Distance-uniform-graphs have logarithmic diameter.