
This is a summary of the talk I gave on September 25th of 2013 in University
of Waterloo. The aim is to explain the paper: BASIC NETWORK CREATION
GAMES, by Alon, Demaine, Hajiaghayi and Leighton, SPAA 2010, SiDMa 2013.
Pictures below are taken from that paper.

Abbas Mehrabian
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1. Network creation games

2. Nash equilibria

3. (*) A simple undirected graph is a sum (max) equilibrium graph if for
every edge xy and every non-edge xz, deleting xy and adding xz does
not decrease the total sum (maximum) of distances from x to all other
vertices.

4. Main ideas in this paper: remove the “creation cost”, considers swap
equilibria, so best response not NP-hard

5. (*) Parameter of study: Largest diameter of an equilibrium graph ... re-
lated to price of anarchy

6. (*) cost of vertex u: sum of distances from u to other vertices

7. n is the number of vertices, we consider connected graphs and all loga-
rithms are in base 2

KEEP ON BOARD(*)
SUM MAX

trees 2 3

general 3 ≤ ...... ≤ 2O(
√
logn) Ω(

√
n)

Theorem 1. If a sum eq. graph is a tree, then the diameter < 3.

Proof. Consider a path of length 3, expressway, swapping, etc.

A tree in max eq. with diameter 3. Three possible edges to add. Only aw
decreases the maximum distance of one of its endpoints, but it actually does
not!
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A Θ(
√
n)-diameter max equilibrium graph

A diameter-3 sum equilibrium graph
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Lemma 1. Let G = (V,E) be a graph, u, v, x ∈ V with uv /∈ E. Assume that

adding edge uv to G decreases cost of u by s, where s > n d(x, u). Then adding

edge xv to G decreases cost of x by at least s− n d(x, u).

Proof. For vertices a, b, let improvea(b) be the amount a gets closer to b by
adding av. Let dnew(a, b) be the distance between a and b in G∪ av. Let W be
the set of vertices w with improveu(w) > 0. For all w ∈ W we have

improvex(w) = d(x,w) − dnew(x,w) ≥(d(u,w)− d(u, x))− (1 + d(v, w))

=d(u,w) − (1 + d(v, w)) − d(u, x)

= improveu(w) − d(u, x).

Thus

∑

w∈V

improvex(w) ≥
∑

w∈W

improvex(w) ≥
∑

w∈W

[improveu(w) − d(u, x)]

=s− |W | d(u, x) ≥ s− n d(u, x),

and the proof is complete.

Theorem 2. All connected sum equilibrium graphs have diameter 2O(
√
logn).

Let G = (V,E) be a sum equilibrium graph with diameter > 2 logn+ 2.
Claim 1. For each u ∈ V there exists edge xy with d(u, x) ≤ 1 + logn whose
deletion increases cost of x by ≤ 2n(1 + logn).

Proof of Claim 1. Consider BFS tree rooted at u from level 0 (just u) to level
1 + logn.

If there is a cross-edge xy, done.
WMA There is no cross-edge.

Tv := subtree rooted at v.
ground := level 1 + logn
grounded vertex : a vertex with a descendent at ground
gd(v) := distance between v and ground.

If u is not grounded the diameter is ≤ 2 logn+ 2, done.
WMA u is grounded. We show this case is impossible!

Claim 1.1. If v 6= u is grounded then |Tv| ≥ 2gd(v).

Proof of Claim 1.1. By induction on gd(v). Easy for gd(v) = 0. Assume v has
> 1 grounded children a and b. Then

|Tv| ≥ 1 + |Ta|+ |Tb| ≥ 1 + 2× 2gd(a) = 1 + 2gd(v)

WMA v has 1 grounded child a so v is a cut vertex.
p := parent of v. If p swaps edge pv with pa, the change in its cost is:

−|Ta|+ |Tv| − |Ta| ≥ 0

4



so
|Tv| ≥ 2|Ta| ≥ 2× 2gd(a) = 2gd(v)

Let v be a grounded child of u. Then by Claim 1.1, |Tu| > |Tv| ≥ 2logn, case
impossible!

Claim 2. Let uv /∈ E. Joining u and v decreases cost of u by ≤ 6n logn.

Proof. Suppose uv is a counterexample. Use Claim 1 to find xy. If x swaps
xy with xv, its cost increases by ≤ 2n(1 + logn) ≤ 3n logn (Claim 1); since
d(x, u) ≤ 1 + logn, its cost decreases by ≥ 6n logn − n(1 + log n) ≥ 4n logn
(Lemma 1).

B(u, k) := set of vertices with distance at most k from u,
f(k) := minu∈V |B(u, k)|.

Claim 3.

f(4k) ≥ min

{

n

2
,

kf(k)

24 logn

}

.

Proof. Let u ∈ V and WMA B(u, 4k) < n/2. Then B(u, 3k) < n/2.
S := a maximal set of vertices at distance 3k from u such that the distance
between any pair of vertices in S is ≥ 2k + 1.
For every v /∈ B(u, 3k), distance of v from some s ∈ S is ≤ d(u, v)− k.
So there exists s0 ∈ S and A ⊆ V \ B(u, 3k) so that |A| ≥ n/2|S| and ∀a ∈ A,
d(a, s0) ≤ d(a, u)− k.
Joining u and s0 decreases cost of u by ≥ (k − 1)n/2|S| ≥ kn/4|S|.
This is ≤ 6n logn by Claim 2, so |S| ≥ k/24 logn.
Balls {B(s, k) : s ∈ S} are disjoint and lie in B(u, 4k), hence |B(u, 4k)| ≥
kf(k)/24 logn.

Proof of Theorem 2.

f(2
√
logn) ≥ 2

√
log n

because G is connected.
0 ≤ σ := smallest integer for which f(2

√
logn4σ) ≥ n/2. By Claim 3, for every

1 ≤ i < σ,

f(2
√
logn4i)

f(2
√
logn4i−1)

≥ 2
√
logn4i−1

24 logn
= 2Ω(

√
logn).

So, for all 1 ≤ i < σ,

f(2
√
log n4i) = 2Ω(i

√
logn).

But, since

f(2
√
logn4σ−1) ≤ n/2 = 2logn−1,

we have σ = O(
√
log n). Since f(2

√
logn4σ) ≥ n/2. for any two vertices u and

v, the distance between u and v is at most

1 + 2× 2
√
log n4σ = 2O(

√
logn),
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The authors conjecture all sum equilibrium graphs have polylogarithmic
diameter.

A graph is ε-distance-uniform if there exists r such that, for every vertex v,
the number of vertices at distance exactly r from v is ≥ (1− ε)n.

Theorem 3. Let G be a sum equilibrium graph with n vertices and diameter

g > 2 logn. Then there exists an ε > 0 and an ε-distance-uniform graph G′ with

n vertices and diameter Θ(εg/ log2 n).

Conjecture. Distance-uniform-graphs have logarithmic diameter.
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