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1. Definition. A tester for property P is a randomized algorithm that

inputs a distance parameter ε > 0, can ask questions about a mathe-

matical object O, and

• If O has P then says YES with probability at least 2/3.

• If O is ε-far from satisfying P then says NO with probability at

least 2/3.

• Otherwise, it does not matter what it says.

2. Talk about graph representations (mention the zeros in the incidence

list)

3. Refine the definition of a tester for directed graphs

4. Query complexity is important. We are interested in testers whose

query complexity is sublinear in the size of G.

5. This paper studies the property “being acyclic” and proves that:

(a) In the adjacency matrix representation, there is a tester with

query complexity O( log
2(1/ε)
ε2

).

(b) In the incidence list representation, every tester asks Ω(n1/3)

queries.
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Acyclicity Testing Algorithm.

1. Uniformly and independently select a set of Θ
(
log
(
1
ε

)
/ε
)

vertices,

called U .

2. For every i, j ∈ U query ask ij ∈ E? and ask ji ∈ E?

3. If G[U ] contains a cycle, say NO; otherwise say YES.

Theorem 1. The algorithm is a tester.

Given W ⊆ V say v has high outdegree w.r.t. W if v has at least ε
2n

edges to W .

Lemma 2. If G is ε-far from acyclic, the there exists W ⊆ V s.t. |W | ≥√
ε
2n, and every vertex v ∈W has high outdegree w.r.t. W .

Proof. Put vertices in a linear order, such that the number of backward

edges is small. Start from the end and as long as |V | ≥
√

ε
2n, put a vertex

v that has low outdegree at the beginning of the list. In each step you add

ε/2n backward edges, giving a total of ε
2n

2.

Once |V | <
√

ε
2n order the rest arbitrarily. This adds at most ε

2n
2

backward edges. Hence total backward edges are at most εn2.
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Lemma 3. Let W ⊆ V be s.t. every v ∈W has at least δ|W | edges to W ,

for some 0 < δ ≤ 1/2. For c > 10, if we randomly choose m = c(log(1/δ)/δ)

vertices from W , call it U then with probability at least 9/10 the subgraph

induced by U induces a cycle.

Proof. We prove whp every u ∈ U has an outgoing edge to U . Assume

that m = c(log(1/δ)/δ) = |U |. The probability that a fixed u ∈ U has no

outgoing edge to U is at most

(1− δ)m−1 ≤ exp(−(m− 1)δ) ∼ exp(−c log(1/δ)) = δc.

By union bound the probability that some u has no edge to U is at most

mδc = (
c ln(1/δ)

δ
)δc < 1/10.

Proof of Theorem 1. If G is acyclic then the algorithm always says YES.

Assume that G is ε-far from acyclic, let α = |W |/n, where W is as in

Lemma 2. Let δ = min{1/2, ε2α}. By Lemma 2, α ≥
√

ε
2 and every v ∈ W

has at least ε
2n ≥ δ|W | edges to W . Let m = 10 log(1/δ)/δ. If we choose

2m/α vertices from V , on average 2m of them are in W . By Chernoff’s

bound, with probability at least 9/10, m of them are in W . By Lemma

3, with probability at least 9/10, these m vertices induce a cycle and the

algorithm says NO.

The number of vertices the algorithm samples equals

2m

α
≤ 4 log (log 1δ)

δ
√

ε
2

= O

(
log(1/ε)

ε

)
.

Theorem 4. Testing Acyclicity in the incidence-lists representation

with distance parameter ε < 1/16 requires Ω(n1/3) queries.
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Lemma 7. If o(n1/3) queries are asked, than whp the two knowledge

graphs are isomporhic.

Proof. Query-answer pairs: (vi,mi) − ai. Assume the algorithm does not

ask a question twice. t queries are asked.

Observation: The knowledge graphs are isomorphic if none of the fol-

lowing happens:

1. A vertex in the knowledge graph is returned as the answer of a query.

2. Answer ’0’ is returned to some query.

For the first one, the worst case is that t vertices from the knowledge

graph are in layer i+1, and an edge going out of a vertex in layer i is queried.

Then the probability of (1) happening is at most t/n2/3 = o(n−1/3). By

union bound over the t queries, the total probability is o(1).

For the second one, we may assume that the algorithm’s objective is

to find a sink. Assume the knowledge graph consists of s paths starting

from vertices h1, . . . , hs and having lengths l1, . . . , ls. Note that the sum of

lengths is at most the number of queries, o(n1/3). Then

Pr[hj+lj ≥ n1/3 for some j] ≤
∑
j

Pr[hj+lj ≥ n1/3] =
∑
j

lj/n
1/3 = n−1/3

∑
j

lj = o(1).
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Remarks:

• The lower bound holds even if the algorithm is allowed to ask about

incoming edges; the proof is almost the same.

• The property of being “strongly connected” has also been studied in

the paper. If the algorithm can ask about incoming and outgoing edges

than the query complexity is O(1/ε), but if the algorithm can only ask

about outgoing edges then the query complexity is Ω(
√
n).

8


