
An agent that plays Pacman

Abbas Mehrabian Arian Khosravi

Department of Computer Engineering,

Sharif University of Technology

{mehrabian, ar khosravi}@ce.sharif.edu

January 18, 2008

Abstract

A heuristic-based approach for developing a Pacman controller is described. The agent
can score as high as an average human player, and the result is excellent compared to few
similar works.

Keywords: Computational intelligence; Game controller; Pacman

1 Introduction

We have developed a software controller for Pacman, which is a classical real-time arcade
game. We used “Microsoft Revenge of Arcade Ms. Pac-Man Version 1.0.” The primary goal
was to maximize the player’s score. Our agent outperforms any other artificial agent for this
version (see section 7).

Our approach has been described in this paper. In section 2 the reader gets familiar with
the game and its objectives. We describe the algorithm in sections 3, 4, 5 and 6. Results
have been described in section 7, and some ideas to improve the controller can be found in
section 8.

1



2 About the game

The game is played on a rectangular maze with some walls. The player controls a yellow
creature, the Pacman. In the following, the terms Pacman and the player will be considered
the same. There are many white circles on the maze, called the pills. Pacman scores by
eating the pills. When Pacman eats all of the pills, current level is finished and a new level
with a new configuration will be started. There are some bad guys, the ghosts, who pursue
Pacman and try to eat her. Pacman should avoid them. There are four big white circles when
a level starts, called the power pills. When Pacman eats a power pill, the ghosts become blue
for a few seconds, and she can eat them. The blue ghosts are called the edibles, and Pacman
gets lots of scores by eating them. The eaten ghosts will then re-enter the scene from the
center of the maze. There are some snacks in each level, which sometimes come and move
randomly through the maze. Pacman gets score by eating them, too. The ghosts, edibles
and snacks are being controlled by the computer.

We had these objectives in mind when designed our controller:

1. Avoid the ghosts.

2. Eat all of the pills in a level.

3. When edibles exist, try to eat as many of them as possible.

4. Eat the power pills at good times, i.e. when there are lots of ghosts around.

3 Modeling the game

We have used the Java programming language. To design any computer algorithm, a neces-
sary step is to make the state space discrete. In order to do this, we have modeled the whole
of the game state as an abstract 31×31 table, which we call the game table. The game table
contains 961 cells.

There are mobile objects that interact in the game, namely Pacman, ghosts, edibles and
snacks, we call them game objects. We have used an abstract Java class GameObject to
model them. Game objects can be still, or move in one of four primary directions. Each
game object in the scene occupies one cell of the game table, and has a certain direction at
each moment.

A connected set in the screen, is a set of pixels with the same color. Every connected
set may be the graphical representation of some game object. In fact, the game objects are
abstractions of the connected sets.

The distance between two cells of the game table, is defined as the minimum number of
cells a game object should pass through, in order to get from one cell to the other. Note
that some of the cells contain walls, which are obstacles and the game objects cannot move
through. This distance completely differs from the usual Euclidean distance, but is similar
to the Manhattan distance.

2



4 Program outline

Here is the program’s flow:

repeat forever
capture the screen
extract all connected sets from the screen
for each extracted connected set cs:

find a game object obj such that cs is the representation of obj
update position of obj in the game table

among the four neighbor cells of Pacman’s current cell:
find the cell best such that evaluate(best) is maximum

press the key to go to best

The program captures the game window by a screen capture, decides about the best
move and virtually presses the corresponding key. Although this screen-capture forces a 50%
decrease in agent’s performance, we had no alternatives. Moreover, since this is an infinite
loop, it consumes CPU too much; so the performance is highly dependant on hardware’s
speed.

It can be seen that decision is made locally, that is, the agent makes decision only at this
moment to go to one of the neighbors. This may look greedy, and one may ask why do not
we predict future and devise long-term plans, or use min-max algorithm? There are mainly
three reasons to use this simple algorithm:

1. The ghosts are hard to predict. Despite the fact that their movement is not completely
random and have some general rules, there are several situations that they play quite
unexpectedly. Hence we decided not to try to predict their movement.

2. The number of possible future game states is large, and it will take a lot of time to
calculate deeper if we want to examine every possible movement. Even if we just
consider Pacman and four ghosts, there would be at least 25 states reachable from each
state, which is a big number. Recall that this is a real-time game.

3. Greedy algorithm is a simple one to implement, and its performance satisfied us.

Next we discuss how the function evaluate works. Because of the locality in making
decisions, this function becomes the most important part of our algorithm. It gets a cell
n, a possible future position, as input, computes certain parameters p1(n), p2(n), . . . , pm(n)
related to that cell, and returns the score of that position, which is a linear combination of
these parameters:

score(n) = c1p1(n) + c2p2(n) + . . . + cmpm(n).

Some of these parameters are:

• Distance of n to the nearest pill

• Distance of n to the nearest ghost

• Distance of n to the nearest power pill

3



The coefficients c1, c2, . . . , cm (that are constant during the game) are very important,
and we have tuned them manually to get a good performance. When a coefficient is large,
it means that the corresponding parameter is important.

Coming back to the game objectives, which were described in section 1, one sees that in
order to achieve each of these objectives, some parameters should be defined. In the next
section, we will discuss the parameters that are related to first objective, i.e. escaping.

5 Details of escaping parameters

Avoiding the ghosts is the most important and challenging goal, hence it is worth to be
described in more detail. Three parameters that were used are:

Distance to the nearest ghost This is the most obvious parameter that one could think
of. The agent should try to maximize it. But it can be easily seen that this parameter
is not perfect, and we should have a more universal point of view.

Safeness First we need a definition: Location f is called available from cell p, if Pacman can
start from p and reach f before any ghost (supposing the worst circumstance, when all
ghosts are also going to f). Now, safeness of a cell is the number of available locations
from that cell. The more safeness a cell has, the more likely the agent is to go there.

Ghost energy The ghosts rarely reverse their direction, so we can use this property to
predict them a little. Imagine that every ghost, spreads its “energy” throughout the
game table such that most of the energy goes forward. Now, energy of a cell is the
summation of the ghosts’ energies at that cell, and illustrates the probability of the
ghosts’ presence in near future. Thus the agent prefers to go to a cell with less energy.

6 An improvement in the algorithm

Notice that the larger a coefficient ci is, the more effect the parameter pi would have on
Pacman’s move. But we certainly do not want a certain parameter to have a constant
importance in all situations. For example, escaping parameters should affect more when the
situation is risky. Therefore, the coefficients should not be constant during all phases of the
game. This idea leaded us to the following algorithm:

There are four pre-defined situations: dangerous, normal, safe, and hunting. With
each of them, a set of constants c′

1 to c′
m is associated. In each iteration, the agent first

examines the current game state, and according to some parameters, classifies the current
situation as one of these four situations; then sets the coefficients. For example, when a
ghost is close to Pacman, the agent decides that situation is dangerous, and the coefficients
are set to those associated with the dangerous situation. The remaining steps are same as
the described algorithm.

4



7 Results and related work

The first version our controller, which was completed on 14 Sep. 2007, is comprised of about
2400 lines of Java code, has 4 different situations and 14 parameters. Its record is 21090
points, and gets 17300 points on average on authors’ PC. The result is outstanding, since
this is almost the same as performance of an average human player. We also have the best
official record of an artificial agent that plays this version of Pacman (see [1]), which is 20640
points.

8 Conclusions and future work

We have developed a heuristic-based agent for Pacman game. Algorithm outline is simple,
but implementation and the details are complicated. The result is satisfactory.

A good human player can get 40,000 points in the game. We believe that human’s
advantage over our controller is that he devises long-term plans, while our agent is unable
to do so, and just considers its next move. On the other hand, the advantage of the agent
over human is its ability to calculate very quickly and change its decision instantly.

However, we will have to change our program fundamentally if we want our agent to
decide globally, which is costly. Thus we omitted this idea and are working on the next one.
It would be nice if someone come up with a controller that can think about future and have
plans.

There are 56 coefficients in the program (fourteen coefficients for each of the four sit-
uations), which we have tuned manually. We can use learning algorithms to tune these
coefficients. In every learning algorithm, there should be some way to evaluate the current
playing strategy. Here, the strategy is represented by the coefficients. Based on the observa-
tion that a good human outperforms our player, we have decided to use log-based learning
algorithm to improve our agent. The idea of this algorithm is described next.

There is another program, called the teacher, that improves the agent’s ability over time.
We assume that there is a human master who plays the game very well. First, the master
plays. At every moment teacher saves the parameters and master’s move in a log file. Second,
teacher reads the log file, and at every moment the agent is provided with the parameters;
its move is logged, and is compared with master’s move. The more the agent plays like the
master, the better the strategy is. Teacher then tries to change the agent’s coefficients to
arrive at the optimal strategy.

Acknowledgement. The authors are indebted to Ramin Halavati for his support and ideas.

References

[1] S.M. Lucas, “Ms pac-man competition CEC 2007 results,” University of Essex, Dec. 2007,
Dec. 2007, http://cswww.essex.ac.uk/staff/sml/pacman/CEC2007Results.html.

5


