
The Search Version of 2-Dimensional

Sperner’s Lemma is PPAD-Complete∗

Abbas Mehrabian†

University of Waterloo

April 1, 2011

1 Introduction

Consider a triangulation of a triangle A0A1A2, and suppose that you colour each vertex

of the triangulation by one of the colours 0, 1, or 2. Such a colouring is called a Sperner

colouring if

1. The vertex Ai gets colour i for i = 0, 1, 2.

2. Each vertex on the segment AiAj gets either colour i or colour j, for 0 ≤ i < j ≤ 2.

The 2-dimensional Sperner’s lemma states that if we have a Sperner colouring, then we

will have a multicoloured small triangle, i.e. a small triangle whose vertices have distinct

colours. It is an existential theorem and does not tell us how quickly can we find such a

triangle. In this article we study this problem from algorithmic point of view, and show

that, it is unlikely that a fast algorithm exists for finding a multicoloured triangle. Indeed

we prove that this is a hard problem in a computational complexity sense.

Most of the material is from the paper

Xi Chen and Xiaotie Deng, On the Complexity of 2D Discrete Fixed Point

Problem, ICALP 2006,

∗This is the exposition of my lecture on February 27th, for the course CO 739: Topological Methods

in Graph Theory, Winter 2011, University of Waterloo.
†amehrabi@uwaterloo.ca

1

in which the authors prove that the search problem version of the 2-dimensional Sperner’s

lemma is PPAD-complete. All the figures that appear here, except for the last one, are

copied from the version of the above paper that appeared in the electronic colloquium of

computational complexity.

Some preliminaries and the definition of the class PPAD appear in Section 2. In

Section 3, we define a search problem RLEAFD that will be used to show our main

result, and prove that it is PPAD-complete. We prove the main result in Section 4. In

Section 5 we mention some other PPAD-complete problems.

2 Total NP search problems and the class PPAD

In this section we formally define our framework, the class PPAD, and the search version

of 2-dimensional Sperner’s lemma.

Definition (TFNP). Let R ⊆ {0, 1}∗ × {0, 1}∗ be a relation satisfying the following

properties.

(a) Given strings x, y ∈ {0, 1}∗, it can be checked in polynomial time if (x, y) ∈ R.

(b) There is a polynomial p such that if (x, y) ∈ R then |y| ≤ p(|x|).

(c) For every x ∈ {0, 1}∗ there exists at least one y ∈ {0, 1}∗ with (x, y) ∈ R.

The total NP search problem associated with R, denoted by QR, is the following problem:

given an input x ∈ {0, 1}∗, find a y ∈ {0, 1}∗ such that (x, y) ∈ R. The term “total” refers

to the condition (c) above. We write TFNP for the class of total NP search problems.

Next we define the notion of reductions for search problems.

Definition (reduction). Let QA and QB be total search problems. The problem QA is

polynomial time reducible to QB if there exists a pair (f, g) of polynomial time computable

functions such that, for every input x of QA, if y satisfies (f(x), y) ∈ B, then (x, g(y)) ∈ A.

Let us see why this definition makes sense. Assume that QA is reducible to QB,

and there is an algorithm B that solves QB in polynomial time. We use this to give

a polynomial time algorithm A for QA. The algorithm A works as follows. Let x be

an input to the problem QA. A computes f(x) and runs B on f(x), and suppose that

y = B(f(x)). Next A computes g(y) and outputs it. By definition, we have (f(x), y) ∈ B,

and this gives (x, g(y)) ∈ A, so the algorithm A works correctly.

2

Let us fix our graph-theoretic notation. Let G be a directed graph. The in-degree

(resp. out-degree) of vertex v is the number of vertices that has an edge to (resp. from) v.

The maximum in-degree (resp. maximum out-degree) of vertices of G is written ∆−(G)

(resp. ∆+(G)). A leaf in G is a vertex whose sum of in-degree and out-degree is 1.

A typical NP search problem, whose totality is based on an easy parity argument, is

the following.

Definition (LEAFD, a.k.a. End-Of-The-Line). The search problem LEAFD is defined

as follows. The input is a pair (M, 0k), where M is a polynomial time Turing machine

generating a directed graph G with vertex set {0, 1}k such that ∆−(G) = ∆+(G) = 1.

More formally, for any v ∈ {0, 1}k, M(v) gives the unique in-neighbour and out-neighbour

of v if they exist. The graph G also has the property that, the vertex 0k has in-degree 0,

and there is an edge from 0k to 1k. The output is a leaf other than 0k.

The problem LEAFD is the canonical problem whose totality is based on a parity

argument in directed graphs. With this view, the class “Polynomial Parity Arguments on

Directed graphs (PPAD)” of search problems was defined by Papadimitriou (On graph

theoretic lemmata and complexity classes, FOCS 1990) as the following.

Definition (PPAD). PPAD is the set of total NP search problems that are polynomial

time reducible to LEAFD.

For a complexity class C, problem P is complete for C, or C-complete, if P is in C, and

any problem in C is reducible to P. From its definition, LEAFD is complete for PPAD.

Now, we define the 2D-SPERNER problem, whose totality is based in 2-dimensional

Sperner’s lemma.

Definition (2D-SPERNER). Let Tn be the standard n × n triangulation of a triangle.

For example, T7 is illustrated in Fig. 1. The input to the search problem 2D-SPERNER

is a pair (F, 0k), where F is a polynomial time Turing machine that produces a Sperner

3-colouring on T2k . More precisely, each vertex p of T2k has colour F (p) ∈ {0, 1, 2}. The

output is a multicoloured triangle.

3 RLEAFD is PPAD-complete

To prove that 2D-SPERNER is PPAD-complete we need to show that 2D-SPERNER is

reducible to LEAFD, and LEAFD is reducible to 2D-SPERNER. We will not directly

prove that LEAFD can be reduced to 2D-SPERNER, but we will use an in-between

3

problem called RLEAFD. In this section we define this problem and prove that it is

PPAD-complete.

Definition (Gn). The graph Gn is a “grid embedding” of the complete graph on n vertices

0, 1, . . . , n − 1. Here the term “complete” means that for each i 6= j, we have an edge

both from i to j and from j to i. Consider a 3n2 × 6n grid. For each i, 0 ≤ i ≤ n − 1,

vertex i is mapped to the point (0, 6i) of the grid. For every edge ij, we add a path from

point (0, 6i) to (0, 6j) in the grid, which is formed by drawing straight lines between the

points (0, 6i), (3(ni + j), 6i), (3(ni + j), 6j + 3), (0, 6j + 3), (0, 6j) in the grid. Next, for

every point u of the grid that has four incident edges, which corresponds to a crossing of

two added paths, we put a gadget around u, as depicted in Fig. 2.

For example, the graph G3 is shown in Fig. 3.

The graph Gn is rich enough: one can embed any graph with n vertices as a subgraph

of Gn on an 3n2 × 6n grid. However, we would like to work with graphs in which every

vertex has at most one in-neighbour and at most one out-neighbour. Hence we define the

class Cn to be the set of all subgraphs of Gn that have this property, and in which the

vertex (0, 0) has in-degree 0 and out-degree 1 (so it is a leaf). Now we can define the

problem RLEAFD.

Definition (RLEAFD). The search problem RLEAFD is defined as follows. The input is

4

a pair (K, 0k), where K is a polynomial time Turing machine generating a graph in C2k ,

and the output is a leaf other than (0, 0).

Theorem 1. The problem RLEAFD is PPAD-complete.

Proof. It is clear that RLEAFD is the same as LEAFD, with a restricted set of input.

Hence RLEAFD is reducible to LEAFD, so it is contained in PPAD. To prove the com-

pleteness of RLEAFD, we need to show that LEAFD is reducible to RLEAFD.

Let (M, 0k) be an input instance of LEAFD, and G be the directed graph generated

by M . Note that G has 2k vertices. Let V (G) = {0, 1, . . . , 2k − 1}. We build the graph

C(G) as follows. First, embed the graph G as a subgraph of G2k in a 3 · 22k × 6 · 2k grid

by mapping vertex i to grid point (0, 6i), adding a grid path between (0, 6i) and (0, 6j)

for each edge ij of G (as we did in the definition of Gn), and putting a gadget (see Fig. 2)

at each crossing. Next, for each crossing at a grid point u, remove the edges incident to

u. For example, if G has vertices {0, 1, 2} and edges {(0, 2), (2, 1)}, then the graph C(G)

is shown in Fig. 4.

It is easy to see (but messy to write down) that a Turing machine generating C(G)

can be built given a Turing machine generating G. Observe that if G is a valid input for

LEAFD, then C(G) ∈ C2k , i.e. C(G) is a valid input for RLEAFD. The crucial observation

is, C(G) is not a planar embedding of G, as the structure of G is mutated dramatically

in C(G); however, it preserves the leaf nodes of G and does not create any new leaf node.

5

In other words, vertex i is a leaf in G if and only if grid point (0, 6i) is a leaf in C(G), and

any leaf of C(G) is of the form (0, 6j) for some 0 ≤ j ≤ n− 1. Therefore, given a leaf of

C(G), we can locate a leaf of G easily, and this proves that this is indeed a reduction.

4 2D-SPERNER is PPAD-complete

We prove our main result in this section.

Theorem 2. The problem 2D-SPERNER is PPAD-complete.

Proof. First we show that RLEAFD is reducible to 2D-SPERNER, which shows that

LEAFD is reducible to 2D-SPERNER. Let (K, 0k) be an input instance of RLEAFD, and

G ∈ C2k be the directed graph K generates, which is embedded in a 3 · 22k × 6 · 2k grid

(for example, G could be the graph in Fig. 4). From G we build a Sperner 3-colouring of

T22k+5 (the standard 22k+5 × 22k+5 triangulation) such that a multicoloured triangle gives

a leaf of G. We will use the three colours white, black and gray.

To understand the reduction better, it helps to look at an example while reading the

details below. Let G2 be the grid embedding of the complete graph on 2 vertices, which

is shown in Fig. 6 (up). The graph G = C(G2) ∈ C2 is shown in Fig. 6 (bottom). The

6

obtained Sperner 3-colouring of T128 is shown in Fig. 7, in which for clarity, not all vertices

and edges of the triangulation are shown.

Assign coordinates to the points of T = T22k+5 so that the lower-left point is (0, 0),

the rightmost points is (22k+5, 0), and the upmost point is (0, 22k+5). First, we colour all

points of T white. We map vertex (u1, u2) of G into point (3u1 + 3, 3u2 + 3) of T (to

get some space between the components). Thus every edge in G corresponds to a path

of length 3 in T . Since graph G has ∆−(G) = ∆+(G) = 1, it is a collection of (directed)

paths and (directed) cycles.

For every path in G, which corresponds to a (longer) path in T , we colour the points

on the path black, but we keep the two endpoints white. When we walk along the path,

we colour the points that are immediately to our left gray, and colour the points that are

immediately at our right white.

For every cycle in G, which corresponds to a (longer) cycle in T , we colour the points on

the cycle black. When we walk along the cycle, we colour the points that are immediately

to our left gray, and colour the points that are immediately at our right white.

Next we do some small modifications. First, we do not want the leaf (0, 0) of G

correspond to a multicoloured triangle (since we are seeking another leaf), so we just

“imagine” that the path in T starting from (3, 3) (corresponding to the (0, 0) leaf of G),

actually starts from (0, 0) (which corresponds to nothing in G), then goes to (0, 3), and

7

8

then goes to (3, 3) (look at the lower left part of Fig. 7), and colour the point around

this path as described above. Also we colour the vertex (0, 0) black, although it is an

endpoint of a path. This way we avoid a multicoloured triangle around the point (3, 3).

Second, we want for the colouring to be a Sperner colouring. The point (0, 0) is black,

and (22k+5, 0) is white. So we colour (0, 22k+5) gray, and colour all uncoloured points on

the left segment of the triangle gray. This way we get a Sperner colouring of T .

Now, notice that any multicoloured triangle in this 3-colouring corresponds to an

endpoint of a path, and so gives a leaf of G.

Conversely, we show that 2D-SPERNER is reducible to LEAFD. The proof is due to

Papadimitrou (On the complexity of the parity argument and other inefficient proofs of

existence, JCSS, 1994) and the figure below is copied from that article. Consider a Sperner

colouring using colours 0, 1, 2 of a standard triangulation. We augment the triangulation

by adding an edge from the main triangle’s vertex coloured 0 to all vertices on the (0, 1)-

segment, except for the vertex to which it is already adjacent (see the figure below). Now,

build a directed graph G by putting a vertex in each face (including the outer face) of

the resulting inner-triangulated planar graph. Put an edge from vertex u to vertex v in G

if, when going from the face of u to the face of v, you should pass through an edge with

endpoints coloured 0 and 1, such that the 1 is on your left, and the 0 is on your right (in

the figure below, some of the edges are shown).

It is easy to see that every vertex in G has in-degree and out-degree at most 1, and if

a vertex is a leaf, then its corresponding face is either the outer face, or a multicoloured

triangle. Moreover, the vertex of the outer face is indeed a leaf (since there is no (0,1)-

edge on the other two segments of the original triangulation), so G has another leaf,

i.e. there exists a multicoloured triangle. But none of the artificial triangles we built on

the (0,1)-segment is multicoloured, because the colour 2 does not appear in this segment.

Hence any other leaf gives a multicoloured triangle in the original triangulation, and this

9

completes the proof.

5 Other PPAD-complete problems

In recent years, the search version of many mathematical theorems, whose proofs are based

on some type of parity argument were proved to be PPAD-complete. In this section, the

material of which is taken from the homepage of Shiva Kintali1, we mention some theorems

whose corresponding search versions are PPAD-complete (see his homepage for references

and more examples).

• The 2-dimensional Brouwer’s fixed point theorem

• The 2-dimensional Sperner’s lemma (this article)

• Nash’s theorem for 2-player games

• Scarf’s lemma

• The 2-dimensional Tucker’s lemma

• The Borsuk-Ulam’s theorem

1http://www.cc.gatech.edu/∼kintali/ppad.html

10

