
1

COMP-573A Microcomputers

SPARC Architecture v8-v9
slides by Alexandre Denault

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 1

Design Goals

SPARC was designed as a target for optimizing compilers 
and easily pipelined hardware implementations. SPARC 
implementations provide exceptionally high execution 
rates and short time-to-market development schedules.

The SPARC Architecture Manual, Version 8

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 2



2

A bit of history …

● 1984: A team of Sun engineers (including Bill Joy) decide to 
create the SPARC architecture, mostly based on the work of 
Patterson. 

● 1986: SPARC V7 specification is published.
● 1986: First SPARC processor is implemented by Sun/Fujistu.
● 1989: SPARC International is founded and the SPARC 

Architecture becomes an open standard.
● 1990: SPARC V8 specification is published.
● 1993: SPARC V9 specification is published.

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 3

Why create SPARC International?

● To establish a strong set of standards and avoid vendor 
dependent solutions.
● Control of the SPARC architecture is in the hands of an 

independent, non-profit organization, SPARC International, 
whose membership is open to everyone.

● To protect the SPARC label and test the various 
implementation for conformance.
● SPARC International has developed the SPARC Application 

Conformance Toolkit, which can test systems for conformance 
against the SPARC Compliance Definition.

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 4



3

The SPARC Architecture

● Load and store architecture. Operations are always done 
over registers.

● Offers a large number of registers using a “register 
window” scheme.

● Instruction set has only 72 basic instructions.
● Passes arguments using registers and the stack.
● Optimizes branch instruction using a delay slot.

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 5

Memory Architecture

● Memory is never directly addressed, so we do not need to 
concern ourselves with the memory architecture.

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 6



4

General Purpose Registers

● The SPARC uses a “register scheme” to manage the large 
number of registers available to the the programmer.

● A SPARC processor can contain anywhere between 52 
and 524 general purpose registers.

● At any moment, a programmer has access to 32 of these 
registers.

● 8 of these registers are global, thus available from any 
function.

● The 24 other registers are part of the register sliding 
window.

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 7

General Purpose Registers (cont.)

● A sliding window contains three types of registers:
● Input registers : Arguments are passed to a function 

using these registers.
● Local registers : The programmer can use these 

registers to store any local data.
● Output registers : When calling a function, the 

programmer puts his argument in these registers.
● Programmers have access to 8 registers of each type.
● However, some of these registers have a special purpose 

and should not be used to store local data.

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 8



5

General Purpose Registers (cont.)

● When a function is 
called, the register 
window “slides”. 
● Output registers 

become input 
registers

● A new set of local 
registers and output 
registers are 
provided.

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 9

General Purpose Registers (cont.)

● Several of these 
windows are available 
to the programmer.

● When all available 
windows are taken, the 
CPU frees the oldest 
window by dumping 
its content the stack.

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 10



6

General Purpose Registers (cont.)

● Increasing the number of register on the processor doesn't 
change the architecture, it just increases the number of 
available sliding windows.

● This type of architecture is very effective in situations 
with many function calls.

● When the OS must change context ( change of running 
process ), all the registers must be dumped to memory 
and the previous register values must be restores.

● The identity of the current sliding window is kept by 5 
bits in the status register.

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 11

General Purpose Registers (cont.)

● As mentionned previously, some registers have special 
purposes:

Global Register Note Purpose
%g0  (r00)      always zero
%g1  (r01)  [1]  temporary value
%g2  (r02)  [2]  global 2
%g3  (r03)  [2]  global 3
%g4  (r04)  [2]  global 4
%g5  (r05)      reserved for SPARC ABI
%g6  (r06)       reserved for SPARC ABI
%g7  (r07)       reserved for SPARC ABI

Global Register Note Purpose
%l0-%l7 (r16)-(r23)  [3]  local 0-7

[1] assumed by caller to be destroyed (volatile) across a 
procedure call

[2] should not be used by SPARC ABI library code
[3] assumed by caller to be preserved across a procedure call

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 12



7

General Purpose Registers (cont.)
Out Register Note Purpose
%o0  (r08)  [3]  outgoing parameter 0 / return 

value from callee   
%o1  (r09)  [1]  outgoing parameter 1
%o2  (r10)  [1]  outgoing parameter 2
%o3  (r11)  [1]  outgoing parameter 3
%o4  (r12)  [1]  outgoing parameter 4
%o5  (r13)  [1]  outgoing parameter 5
%o6,%sp (r14) [1]  stack pointer
%o7  (r15) [1]  temporary value / address of CALL 

instruction

In Register Note Purpose
%i0  (r24)  [3]  incoming parameter 0 / return 

value to caller
%i1  (r25)  [3]  incoming parameter 1
%i2  (r26)  [3]  incoming parameter 2
%i3  (r27)  [3]  incoming parameter 3
%i4  (r28)  [3]  incoming parameter 4
%i5  (r29)  [3]  incoming parameter 5
%i6,%fp  (r30)  [3]  frame pointer
%i7  (r31) [3]  return address - 8

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 13

The Stack

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 14

4 by. hidden return

free space

64 bytes reserved to 
save i0-i7 and l0-l7 in 

case of interrupt

24 byte reserved for 
first six arguments

temporary space
(if needed)

other parameters (after 
six)

local variables

%sp

%sp + 64

%sp + 92

%fp

%fp – 4 * n

%sp + 92 + 4 * p



8

The Stack (cont.)

● When creating a function, the programmer must calculate 
the size of the stack frame he will need.
● Start with a base value of 92
● If a function with more than 6 parameters will be used, 

add 4 bytes for each extra parameter (over 6).
● Add 4 bytes for each local variable you want to create.
● Add any amount of temporary space you want (multiple 

of 4 bytes).
● The final number must be a multiple of 8 (pad with an 

extra 4 bytes of temporary space if it is not).

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 15

The Stack (cont.)

● The first 64 bytes of the reserve space is used to save  the 
values of %i0-%i7 and %l0-%l7 if we run out of sliding 
windows.

● Normally, the return value of a function will be found in 
%o0. However, if a structure value will be return, the 
value of the structure to fill should be place in the hidden 
return slot before the call.

● When a function is called, the first six parameters are 
placed in the registers %o0-%o5. However, some 
operations cannot be executed over registers. Arguments 
can alternatively be passed on the stack using these last 6 
reserved bytes.

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 16



9

The Stack (cont.)

● When calling a function with more than 6 parameters, 
additional parameters should be placed on the stack.

● Local variables and temporary space are easier to address 
using the frame pointer (fp).

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 17

Addressing Memory

● Register Indirect with Index
The effective address is calculated by adding the 

contents two integer registers. Used for array access.
ld [r1+r2], r3

● Register Indirect with Displacement
The effective address is calculated by adding a 13 bit 

signed integer constant to a register. Used with pointers 
to structures or to access the stack.
st r3, [r1+12]

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 18



10

Instruction Set

● Unlike Intel x86, instructions only come in one 32 bit
flavor (except for floating-point operations).

● Most operation (other than load and store) can only be 
done over registers.

● A completely different set of instructions and registers is 
provided for floating point arithmetic.

● Some instructions are mnemonics for other instructions 
(alias). Notable examples include: set, not, neg, call, jmp 
and cmp.

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 19

Load and Store

● As mentioned before, the SPARC is a load and store 
architecture. Many operation cannot be done over 
memory.
● The logic behind this is simple : it is often faster to load, 

execute your operation and store than to provide one 
huge instruction to do all three operations.

● Brackets [ ] are used to refer to the content of memory at 
a particular address.
st r3,[r1] -- Store the value of r3 at 

-- memory address r1
ld [r1],r3 -- Load the content of memory  

-- at r1 into register r3

● The move instruction should be use to move data from 
one register to another.

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 20



11

Loading Constants
● Constants need to be loaded using 2 instructions (since 

their 32 bit address is too large to fit in an single 
instruction).
sethi   %hi(.LLC0), %o0 --set 22 first bits

or      %o0, %lo(.LLC0), %o0 --set 10 last bits 

● The %hi and %lo keywords allow use to isolate a specific 
part of an address without the need to use bit shifting.

● The set instruction can be use instead. It is not real 
SPARC instruction but a keyword interpreted by the 
compiler. The final machine code will still use the two 
mentioned instructions.
set FPzero, %i4

set string1, %o0

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 21

Arithmetic and Logic Instructions

● The SPARC architecture uses 2's complement 
representation for signed integer values.

● Most arithmetic instruction such as add and subtraction 
are signed.

● Logical operations such as AND or NOT are not signed.
● Unlike Intel x86, most arithmetic and logic operation 

require a destination register.

add r1, r2, r3 -- r3 = r1 + r2

sub r1, r2, r3 -- r3 = r1 - r2

and r1, r2, r3 -- r3 = r1 AND r2

neg r1, r2 -- r2 = - r1

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 22



12

Multiplication and Division

● Unlike most arithmetic operations, multiplication and 
division are available in signed and unsigned mode.

● Integer multiplication and division use a special %y 
register.
● For multiplication, the %y register is used to old the higher 

order bits of the results.
For division, the %y register is used to old the higher order bits 
of the number behind divided. After the division, the remainder 
can be found in the %y register.

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 23

Multiplication and Division (cont.)

smul    %r2, %r3, %r2   -- r2 * r3 --> y & r2

udiv    %r2, %r3, %r2   -- y & r2 / r3 --> r2

-- remainder in y

● Remember to clear %y register before a multiplication or 
a division if you are not using it to store higher-order 
bytes.
● Warning! It takes three cycles to access (read/write) the %y 

register. That means there must be at least 3 instructions (cycle) 
between any two instructions that use the %y register.

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 24



13

Floating-point instructions

● A SPARC V8 processor is equipped with 32 floating-
point registers. These can be use to hold:
● 32 single-precision number (1 register each)
● 16 double-precision number (2 registers each)
● 8 quad-precision number (4 registers each)
● Any combination of the above ...

● Operations over these three types of floating-point 
numbers are provided.

● Operations to convert integer to floating-point or vice-
versa are also provided.

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 25

Floating-point instructions (cont.)
● Operations to move date from general purpose registers to 

floating-point registers are not allowed.
● If you receive float-point as arguments (%i0-%i5), you 

will need to put them in memory temporarily to transfer 
them to a floating-point register.

● The type of rounding used is determined by two bytes in 
the Floating-Point State Register (30 and 31).

● Special purpose mathematical instructions are provided 
on chip (such as square root ).

st %i2,[%fp-8]         -- Save temp to mem
ld [%fp-8],%f3         -- f3 = i2
fadds %f2,%f3,%f5   -- f5 = f2 + f3

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 26



14

Jump Instructions
● Jump instructions are similar to those found on the Intel 

x86.
● However, every branch instruction on the SPARC 

architecture has a delay slot.
● The instruction place after a branch instruction will be execute

before the branch. The instruction in a delay slot must only take 
1 cycle to complete.

● If the annul bit is set on a conditionnal branch (“,a” is added to 
the instruction), then the instruction in the delay slot will not be 
executed if the branch is not taken.

call dofunction,0           
add  #i1, #i2, %i3  <- Executed before call

bne,a label <- Annul bit          
add  #i1, #i2, %i3  

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 27

Stack Instructions
● As mentioned before, the programmer must, at the 

beginning of a function, allocate his stack frame.
● This can be done using the save instruction.
● Calling the save instruction also slides the register 

window.
● A stack frame must never be smaller than 96 bytes.
● The programmer must deallocate the stack frame at the 

end of his function using the restore instruction.

save    %sp, -112, %sp -- Save stack frame of 112 
-- bytes and slides the 
-- register window

...
restore -- Deallocate stack frame 

-- and slides back the 
-- register window

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 28



15

Functions Instructions

● The call instruction can be use to branch the execution of 
our program to a new function.

● The ret instruction can be used to return the execution of 
our program to the previous function.

● Please note that the call and ret instruction are both 
branching instruction, thus they have delay slots.

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 29

Instruction Reference

● Here are some of the most common Sparc assembly 
instructions.

● The descriptions were taken from “The SPARC 
Architecture Manual, Version 8” and “The SPARC 
Architecture Manual, Version 9”

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 30



16

Move Register

Syntax:
mov reg2 or imm11, regd

Operation:
regd ← reg2 or imm11

Description:
This instruction copies an integer register to another integer register. It does not 

modify any condition codes.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 31

Load Word

Syntax:
ld [address], regd

Operation:
regd ← [address]

Description:
The load word instruction copies a word from memory into r[d]. The effective 

address for a load instruction is either “r[1] + r[2]” or “r[1] + sign_ext 
(simm13)”.

A successful load instruction operates atomically.
The ld instruction can also be used to load single floating-point numbers to 

floating point registers. However, to load double or quad floating-point 
numbers, the ldd and ldq instructions must be used.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 32



17

Store Word

Syntax:
st regrd, [address]

Operation:
[address] ← regd 
Description:

The store integer instructions copies the whole 32-bit integer register into 
memory. The effective address for a store instruction is either “r[1] + r[2]” or 
“r[1] + sign_ext (simm13)”.

A successful store instruction operates atomically.
The st instruction can also be used to store single floating-point numbers to 

memory. However, to store double or quad floating-point numbers, the std and 
stq instructions must be used.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 33

Add

Syntax:
add reg1, reg2 or imm13, regd

Operation:
regd ← reg1 + reg2 or imm13

Description:
The add instruction computes “r[1] + r[2]” or “r[1] + sign_ext(simm13)”, and 

write the sum into r[d].

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 34



18

Subtraction

Syntax:
sub reg1, reg2 or imm13, regd

Operation:
regd ← reg1- reg2 or imm13

Description:
The sub instruction computes “reg[1] - reg[2]” or “reg[1] - sign_ext(simm13)”, 

and write the sum into reg[d].

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 35

Signed Multiplication

Syntax:
smul reg1, reg2 or imm13, regd

Operation:
Y:regd ← reg1 * reg2 or imm13

Description:
The multiply instruction performs 32-bit by 32-bit multiplication, producing 64-

bit results.  It writes the 32 most significant bits of the product into the Y 
register and the 32 least significant bits into r[d].

A signed multiply assumes signed integer word operands and computes a signed 
integer doubleword product.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 36



19

Unsigned Multiplication

Syntax:
umul reg1, reg2 or imm13, regd

Operation:
Y:regd ← reg1 * reg2 or imm13

Description:
The multiply instruction performs 32-bit by 32-bit multiplication, producing 64-

bit results.  It writes the 32 most significant bits of the product into the Y 
register and the 32 least significant bits into r[d].

An unsigned multiply assumes unsigned integer word operands and computes an 
unsigned integer doubleword product.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 37

Signed Division

Syntax:
sdiv reg1, reg2 or imm13, regd

Operation:
regd ← y:reg1 / reg2 or imm13

Description:
The divide instruction performs a 64-bit by 32-bit division, producing a 32-bit 

result. The integer quotient are sign-or zero-extended to 32 bits and are written 
into r[d]. On some processors, the remainder can be found in the y register.

Signed division rounds an inexact quotient toward zero. For example, –7 / 4 
equals the rational quotient of –1.75, which rounds to –1 (not –2) when 
rounding toward zero.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 38



20

Unsigned Division

Syntax:
udiv reg1, reg2 or imm13, regd

Operation:
regd ← y:reg1 / reg2 or imm13

Description:
The divide instruction performs a 64-bit by 32-bit division, producing a 32-bit 

result. This operation assumes reg1 and reg2 to be unsigned words. The 
integer quotient are written into r[d]. On some processors, the remainder can 
be found in the y register.

Unsigned division rounds an inexact rational quotient toward zero.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 39

Logical And

Syntax:
and reg1, reg2 or imm13, regd

Operation:
regd ← reg1 & reg2 or imm13

Description:
This instruction implements the bitwise logical AND operation. 
Other available logical operators include:

● andn : And Not

● or : Inclusive Or

● orn : Inclusive Or Not

● xor : Exclusive Or

● xorn : Exclusive Or Not

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 40



21

Set High

Syntax:
sethi %hi (imm22), regd

Operation:
regd ← 0
[10:31]regd ← imm22

Description:
SETHI zeroes the least significant 10 bits of regd, and replaces bits 31 through 

10 of regd with the value from its imm22 field.
SETHI does not affect the condition codes.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 41

Branch

Syntax:
ba{,a} label

Operation:
PC ← PC + ( 4 * sign_ext(disp22) )

Description:
BA (Branch Always) causes an unconditional PC-relative, delayed control 

transfer to the address “PC + (4 * sign_ext(disp22)).”
If the annul field of the branch instruction is 1, the delay instruction is annulled 

(not executed). If the annul field is 0, the delay instruction is executed.
Note that the annul bit has a different effect on conditional branches than it does 

on unconditional branches.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 42



22

Integer Conditional Branch

Syntax:
bcc{,a} label

Operation:
If cc == true then

PC ← PC + ( 4 * sign_ext(disp22) )
Description:

Conditional Bicc instructions evaluate the 32-bit integer condition codes (cc), 
according to the cond field of the instruction, producing either a TRUE or 
FALSE result. If TRUE, the branch is taken, that is, the instruction causes a 
PC-relative, delayed control transfer to the target address. If FALSE, the 
branch is not taken. 

If a conditional branch is taken, the delay instruction is always executed 
regardless of the value of the annul field. If a conditional branch is not taken 
and the a (annul) field is 1, the delay instruction is annulled (not executed). 

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 43

Call and Link

Syntax:
call label

Operation:
r[15] ← PC
PC ← PC + ( 4 * sign_ext(disp30) )

Description:
The CALL instruction causes an unconditional, delayed, PC-relative control 

transfer to address PC + (4 * sign_ext(disp30)). Since the word displacement 
(disp30) field is 30 bits wide, the target address lies within a range of –231 to 
+231 – 4 bytes.

The CALL instruction also writes the value of PC, which contains the address of 
the CALL, into r[15] (out register 7). The value written into r[15] is visible to 
the instruction in the delay slot.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 44



23

Save Caller’s Window

Syntax:
save {reg1, reg2_or_imm13, regd}

Operation:
save register window
regd ← reg1 + reg2 or imm13

Description:
The SAVE instruction provides the routine executing it with a new register 

window. The out registers from the old window become the in registers of the 
new window. The contents of the out and the local registers in the new 
window are zero or contain values from the executing process; that is, the 
process sees a clean window.

Furthermore, SAVE behave like normal ADD instructions, except that the 
source operands r[rs1]and/or r[rs2] are read from the old window (that is, the 
window addressed by the original CWP) and the sum is written into r[rd] of 
the new window (that is, the window addressed by the new CWP).

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 45

Restore Caller’s Window

Syntax:
restore {reg1, reg2_or_imm13, regd}

Operation:
save register window
regd ← reg1 + reg2 or imm13

Description:
The RESTORE instruction restores the register window saved by the last SAVE 

instruction executed by the current process. The in registers of the old window 
become the out registers of the new window. The in and local registers in the 
new window contain the previous values.

Furthermore, RESTORE behave like normal ADD instructions, except that the 
source operands r[rs1]and/or r[rs2] are read from the old window (that is, the 
window addressed by the original CWP) and the sum is written into r[rd] of 
the new window (that is, the window addressed by the new CWP).

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 46



24

Return

Syntax:
ret

Operation:
PC ← r[31]

Description:
The CALL instruction causes an unconditional, delayed, PC-relative control 

transfer to the address held in r[31]. This effectively ends a function call and 
returns control flow to its previous function.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 47

Floating-Point Addition

Syntax:
fadd(s,d,q) freg1, freg2, fregd

Operation:
fregd ← freg1 + freg2

Description:
The floating-point add instructions add the floating-point register(s) specified by 

the reg1 field and the floating-point register(s) specified by the reg2 field, and 
write the sum into the floating-point register(s) specified by the regd field.

Rounding is performed as specified by the FSR.RD field.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 48



25

Floating-Point Subtraction

Syntax:
fsub(s,d,q) freg1, freg2, fregd

Operation:
fregd ← freg1 - freg2

Description:
The floating-point subtract instructions subtract the floating-point register(s) 

specified by the reg2 field from the floating-point register(s) specified by the 
reg1 field, and write the difference into the floating-point register(s) specified 
by the rd field.

Rounding is performed as specified by the FSR.RD field.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 49

Floating-Point Compare

Syntax:
fcmp(s,d,q) freg1 , freg2

Operation:
compare freg1, freg2

Description:
These instructions compare the f register(s) specified by the freg1 field with the 

f register(s) specified by the freg2 field, and set the floating-point condition 
codes.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 50



26

Convert Floating-Point to Integer

Syntax:
f(s,d,q)toi  freg2, fregd

Operation:
fregd ← (integer)freg2

Description:
FsTOi, FdTOi, and FqTOi convert the floating-point operand in the floating-

point register(s) specified by freg2 to a 32-bit integer in the floating-point 
register specified by fregd.

The result is always rounded toward zero; that is, the rounding direction (RD) 
field of the FSR register is ignored.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 51

Convert Integer to Floating-Point

Syntax:
fito(s,d,q) freg2, fregd

Operation:
fregd ← (float)freg2

Description:
FiTOs, FiTOd, and FiTOq convert the 32-bit signed integer operand in floating-

point register(s) specified by freg2 into a floating-point number in the 
destination format. All write their result into the floating-point register(s) 
specified by fregd.

FiTOs, FiTOd, and FiTOq round as specified by the FSR.RD field.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 52



27

Floating-Point Move

Syntax:
fmov(s,d,q) freg2, fregd

Operation:
fregd ← freg2

Description:
FMOV copies the source to the destination unaltered.
This instruction do not round.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 53

Floating-Point Negate

Syntax:
fneg(s,d,q) freg2, fregd

Operation:
fregd ← -freg2

Description:
FNEG copies the source to the destination with the sign bit complemented.
This instruction do not round.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 54



28

Floating-Point Absolute Value

Syntax:
fabs(s,d,q) freg2, fregd

Operation:
fregd ← [0:0]0 :: [1:31] freg2

Description:
FABS copies the source to the destination with the sign bit cleared.
This instruction do not round.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 55

Floating-Point Multiply

Syntax:
fmul(s,d,q) freg1, freg2, fregd

Operation:
fregd ← freg1 * freg2

Description:
The floating-point multiply instructions multiply the contents of the floating-

point register(s) specified by the freg1 field by the contents of the floating-
point register(s) specified by the freg2 field, and write the product into the 
floating-point register(s) specified by the fregd field.

Rounding is performed as specified by the FSR.RD field.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 56



29

Floating-Point Divide

Syntax:
fdiv(s,d,q) freg1, freg2, fregd

Operation:
fregd ← freg1 / freg2

Description:
The floating-point divide instructions divide the contents of the floating-point 

register(s) specified by the freg1 field by the contents of the floating-point 
register(s) specified by the freg2 field, and write the quotient into the floating-
point register(s) specified by the fregd field.

Rounding is performed as specified by the FSR.RD field.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 57

Floating-Point Square Root

Syntax:
fsqrt(s,d,q) freg2, fregd

Operation:
fregd ← freg21/2

Description:
These instructions generate the square root of the floating-point operand in the 

floating-point register(s) specified by the freg2 field, and place the result in the 
destination floating-point register(s) specified by the fregd field.

Rounding is performed as specified by the FSR.RD field.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 58



30

No Operation

Syntax:
nop

Operation:
r[0] ← 0

Description:
The NOP instruction changes no program-visible state (except the PC and nPC).

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 59

Struct. of an Assembly Prog.

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 60

.section    ".rodata"
.align 8

.LLC0:
.asciz  "Hello World"

.section      ".text"
.align 4
.global main
.type    main,#function
.proc   04

main:
save    %sp, -112, %sp
sethi   %hi(.LLC0), %o0
call printf, 0
or      %o0, %lo(.LLC0), %o0
ret
restore

Constants Declaration

Function Declaration

Function Code

Code Alignment



31

Constants Declaration

● Constants should be declare as the beginning of the file 
(though gcc sometimes puts them at the end).

● Very similar to Intel x86.
● Most common type of constants are

● ascii
● asciz (null terminated)
● byte (1 byte)
● word (4 byte)
● single (float)
● double (more precise float)

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 61

Code Alignment

● Some architecture require specific aligning of instructions 
in memory

● Sparc also requires an alignment of a least 3.

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 62



32

Hello Word
.section        ".rodata"               ! Constant Declaration

.align 8
.LLC0:

.asciz  "Hello World\n"         ! HelloWorld string

.section        ".text"
.align 4
.global main                    ! Declare main global so the

! shell can execute it
.type    main,#function
.proc   04

main:                                   ! Main function
save    %sp, -112, %sp          ! Save stack frame
sethi   %hi(.LLC0), %o0         ! Move the first 22 bits of our

!  string into the 1st out reg.
call printf                  ! Call the printf function
or      %o0, %lo(.LLC0), %o0    ! Move the last 10 bits
ret                             ! Return from our function
restore                         ! Restore the stackframe

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 63

Temporary Variables and Arithmetic
.section    ".text"

.align 4

.global main                    ! Declare main global so the
! shell can execute it

.type    main,#function

.proc   04
main:                                 ! Main function

save    %sp, -128, %sp          ! Save stack frame
mov     5, %o0                  ! temp = 5
st      %o0, [%fp-20]           ! x = temp
mov     6, %o0                  ! temp = 6
st      %o0, [%fp-24]           ! y = temp
mov     7, %o0                  ! temp = 7
st      %o0, [%fp-28]           ! z = temp
ld      [%fp-20], %o0           ! temp1 = x
ld      [%fp-24], %o1           ! temp2 = y
add     %o0, %o1, %o0           ! temp1 = temp1 + temp2
st      %o0, [%fp-28]           ! z = temp1
ld      [%fp-28], %i0           ! Prepare to return z
ret                             ! Return from our function
restore                         ! Restore the stackframe

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 64



33

If statement

C Code:

if( i == 0 ) {
/* Inside if */
}
/* Outside if */

Assembler:
mov 5, %o0                  /* i = 5 */

cmp %o0, 0                  /* temp = i - 0 */
bne .Outside_If             /* if i != 0 goto Outside_If */
nop
/* Inside If */

.Outside_If:

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 65

For statement
C Code:
for (j = 0; j < 15; j++) {
/* Inside for */
}
/* Outside for */

Assembler:
st %g0, [%fp-20]           /* j = 0 */
.Begin_For:

ld      [%fp-20], %o0           /* temp = j */
cmp %o0, 14                 /* temp2 = j - 14 */
ble .Inside_For             /* if temp2 <= 0 goto Inside_For */
nop
b       .Outside_For            /* goto outside for */
nop

.Inside_For:
/* Inside For */
ld      [%fp-20], %o0           /* temp = j */
add     %o0, 1, %o1             /* j = j + 1 */
st %o1, [%fp-20]           /* j = temp */
b       .Begin_For
nop

.Outside_For:
mov 0, %i0                  /* Prepare to return 0 */

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 66



34

Evolution of the SPARC
● The V9 architecture is the successor to the V8 architecture 

studied in class. 
● As mentioned before, it was release in 1993, just 3 years 

after the release of the V8 architecture.
● The V9 architecture provides several enhancement over the 

V8 architecture:
● 64- bit virtual address 
● 64-bit integer data
● Addition of 32 single floating-point registers (or 16 double)
● Improved parallelism (ex: 4 fp operations simultaneously)
● New instructions (ex: 64-bit multiply and divided)

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 67

Evolution of the SPARC (cont.)

● Branches on register value (eliminating the need to compare)
● Conditional moves (removes the need for many branches)

● The V9 architecture has many fault tolerance / parallelism 
features built-in such as compare and swap instructions.

● The V9 achieves all this, and remains binary compatible 
with all previous SPARC architecture.

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 68



35

References

● SPARC International Inc. 
http://www.sparc.com/

● The SPARC Architecture Manual Version 8
● The SPARC Architecture Manual Version 9 
● A Laboratory Manual for the SPARC Revision: 1.2 

http://www.cs.unm.edu/%7Emaccabe/classes/341/labman/labman.html

● Rice Universisty Comp 320, Fall 2000, Subset of SPARC V8/V9 
Assembly Language 
http://www.owlnet.rice.edu/%7Ecomp320/2001/assignments/sparc_subset.html

● SPARC stack frame information
http://compilers.iecc.com/comparch/article/91-04-038

● Understanding stacks and registers in the SPARC architecture(s)
http://www.sics.se/%7Epsm/sparcstack.html

COMP-573A Microcomputers

SPARC Architecture v8-v9 Page 69


