
1

COMP-573A Microcomputers

PowerPC Architecture 6xx
slides by Alexandre Denault

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 1

A bit of history …

● The original idea for the PowerPC architecture came
from IBM’s Power architecture (introduced in the
Risc/6000)

● At that time, IBM was interested in finding business
partners to expand Power’s market.

● IBM approached Apple, who was currently looking at
new Risc solutions.

● Motorola, who has extensive knowledge of the
embedded market was also brought into the deal.

● Thus was born the Apple-IBM-Motorola alliance.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 2

2

Addition to the Power Architecture

● Big or little-endian ordering (Power has little-endian,
while most of Motorola’s chip were big-endian)

● Single and double precision floating-point arithmetic
● 64-bit architecture, backward compatible to 32-bit

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 3

The PowerPC architecture

● Architecture resembles a mix between Sparc Risc and
Motorola Cisc.

● Architecture has different implementation levels (so the
chip does not need to be fully implemented for
embedded solutions).

● Load and store architecture. Operations are always done
over registers.

● Offers a large number of mnemonics that increase the
number of instructions without increasing the number of
on-chip instruction.

● Passes arguments using registers and the stack.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 4

3

Memory Architecture

●Like Sparc …
● Memory is never directly addressed, so we do not need to concern

ourselves with the memory architecture.
● Registers in the PowerPC architecture are 32-bit, allowing us to

address 4 gigabytes of virtual memory.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 5

General Purpose Registers

● The Power PC uses a flat-scheme of 32 general purpose
registers.

● Some of these registers have special tasks assigned to them:
● r0 Volatile register which may be modified during function linkage
● r1 Stack frame pointer, always valid
● r2 System-reserved register
● r3-r4 Volatile registers used for parameter passing and return values
● r5-r10 Volatile registers used for parameter passing
● r11-r12 Volatile registers which may be modified during function

linkage

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 6

4

General Purpose Registers (cont.)

● r13 Small data area pointer register
● r14-r30 Registers used for local variables
● r31 Used for local variables or "environment pointers“

● Non-volatile registers (ex: r0, r14-r31) must be saved before
they are used. At the end of a function call, they must be
restored to their original values.

● When working with gcc/gas, registers are referenced as
numbers (ex: 1,2,3, etc). Great care must be used not to
confuse a reference to register 1 and the numeral 1.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 7

General Purpose Registers (cont.)

● References to the register 0 is sometimes interpreted as the
numeral 0 by some functions, even if the parameter was
supposed to be a register. When unsure, it is best to avoid
using variable 0.

● The PowerPC specification is the best resource to identify
the expected arguments of each function.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 8

5

Floating-Point Registers

● The Power PC architecture offers 32 floating-point
registers with 64-bit precision.

● Either single precision or double precision floating-point
numbers can be stored in these registers.

● Instructions to load and store double precision floating-
point numbers transfers 64-bit of data without
conversion.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 9

Floating-Point Registers (cont.)

● Instructions to load from memory single precision
floating point numbers will convert the numbers to
double precision format before storing them in the
register.

● Instructions to store to memory a single precision
number from a register are provided.

● Unlike the Sparc architecture, floating-point arguments
are passed in the floating-point registers.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 10

6

Floating-Point Registers (cont.)

● Floating have special purposes assign to them:
● f0 Volatile register
● f1 Volatile register used for parameter passing and return values
● f2-f8 Volatile registers used for parameter passing
● f9-f13 Volatile registers
● f14-f31 Registers used for local variables

● Like mentioned previously, the value of non-volatile
registers must be saved if they are used in a function.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 11

Conditional Register

● This 32-bit register is divided into 8 groups of 4-bit
registers.

● This allows the programmer to maintain 8 different
results of “condition” that can be used for branching.

● The first parameter of a “compare” or a “branch”
instruction is the CR window number (0 – 7).

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 12

7

Conditional Register (cont.)

● The Condition Register can be used for both integer and
floating point operations.

● The CR0 is often use to store the implicit (condition)
results of an integer operation.

● The CR1 is often use to store the implicit (condition)
results of an integer operation.

● All CR windows can be used to store the result of a
compare operation.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 13

Conditional Register (cont.)

● In these three scenarios, the signification of the four
condition bit changes.

● Certain instructions allow the programmer to copy CR
windows or to manipulate them at the bit level.

● CR2, CR3 and CR4 are nonvolatile (value on entry must
be preserved on exit)

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 14

8

Floating-Point Status and Control
Register

● The Floating-Point Status and Control Register (FPSCR)
allows the programmer to:
● Recording exceptions generated by FP operations
● Recording the type of the result produced by a FP operation
● Controlling the rounding mode used by FP operations
● Enabling or disabling the reporting of exceptions

● The first 24 are bits are status bits. The 12 other bits are
used to control FP operations

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 15

FP Status and Control Register (cont.)

● Some of the status bits are sticky. Once set, these bits
will remained set until cleared by the appropriate
operation.

● Note: An instruction allows you to copy bits from the
FPSCR to a CR windows. These bits can be used to
control branching (tricky).

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 16

9

Link Register

● The Link Register is used to record the return address of
an instruction when the program branches to a function.

● This return address is automatically written to LR when
the branch to function operation is used.

● If a programmer wants to branch to another function, it
his responsibility to save the content of the LR register
(since the content will be overwritten when he branches
to the next function).

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 17

The Stack

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 18

free space

previous SP value

LR to this func.

parameter list *

local variable
space *

CR save area *

general register
save area *

FP register save
area *

previous frame

r1

-4 (r1)

* optionnal component

10

The Stack (cont.)

● When creating a function, the programmer must
calculate the size of the stack frame he will need.
● Start with a base value of 8
● If function with more than 8 integer parameters and/or 8

floating-point parameters will be used, add 4 bytes for
each extra parameter integer parameters and add 8 bytes
for each extra floating-point parameter.

● Add 4 bytes for each local variable you want to create
(8 if you want that local variable to be a double precision
floating-point number).

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 19

The Stack (cont.)

● CR2, CR3 and CR4 are considered non-volatile, so an
additional 4 byte must be added to save them if they will
be modified.

● Several general purpose registers and floating-point
registers are considered non-volatile. For each non-
volatile general purpose register which is modified, add 4
bytes. For each non-volatile floating-point register which
is modified, add 8 bytes.

● The final number must be a multiple of 16 (pad with an
extra bytes of temporary space if it is not).

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 20

11

The Stack (cont.)

● Data in the stack is most often addressed using r1 (stack
pointer) or r31 (frame pointer).

● However, in the PowerPC architecture, the frame pointer
does not need to be defined and often carries the same
value as the stack pointer.

● As previously mentioned, before a function is called, the
current value of LR must be save.

● It is important to note that the current value of the LR
register must be saved in previous stack frame (in the
reserved space).

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 21

The Stack (cont.)

● Under Linux, the format of the stack is defined in the
SYSTEM V ABI PowerPC Processor Supplement
document.

● Other OS, such as MacOs X have a different stack
format.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 22

12

Addressing Memory

● Register Indirect : (rA)
The effective address is stored in a register.

● Register Indirect with Index : (rA) + rB
The effective address is calculated by adding the

contents two integer registers.
● Register Indirect with Offset : (rA) + offset

The effective address is calculated by adding a signed
integer constant to a register.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 23

Instruction Set

● Like Sparc, all instructions have a fixed length of 32-bit.
● Most operation (other than load and store) can only be

done over registers.
● In “gas”, registers are referenced like absolute values. It

is necessary to know the format of each instruction to
differentiate register reference from absolute values.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 24

13

Load and Store

● As mentioned before, the PowerPC is a load and store
architecture. Many operation cannot be done over
memory.

● Parenthesis () are used to refer to the content of memory
at a particular address.

● As mentioned before, offset can be added to a memory
reference to target specific blocks of memory.

● Constants are loaded into registers with the mnemonic li,
which is equivalent to an addition with 0.

li 4,8 -- Load the value 8 in register4.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 25

Load and Store (cont.)

● The load word and zero (stw) instruction can be used to
copy a value from memory to register (note: if 0 is used as a
destination register, the value 0 will be used instead).

lwz 3,8(1) -- load the value at memory address
-- register1 + 8 to register 3

● A popular variation is the load word and zero with update
instruction which will update the destination register with
the address in memory where the value was stored.

lwzu 3,8(1) -- load the value at memory address
-- register1 + 8 to register 3

-- value of register1 is changed to reg1 + 8

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 26

14

Load and Store (cont.)

● The store word (stw) instruction can be used to copy a
value from register to memory (note: if 0 is used as a
destination register, the value 0 will be used instead).

stw 3,8(1) -- Store the value of register3 at
-- memory address register1 + 8

● A popular variation is the store word with update
instruction which will update the destination register
with the address in memory where the value was stored.

stwu 3,8(1) -- Store the value of register3 at
-- memory address register1 + 8 and
-- value of register1 is changed to reg1 + 8

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 27

Arithmetic and Logic Instructions
● The SPARC architecture uses 2's complement

representation for signed integer values.
● Most arithmetic instruction such as add and subtraction

are signed.
● Some instructions, such as addi will use the value 0 if

register 0 is used as an argument.

add 1, 2, 3 -- r1 = r2 + r3

addi 1, 2, 3 -- r1 = r2 + 3

addi 1, 0, 3 -- r1 = 3

sub 1, 2, 3 -- r1 = r2 - r3

subf 1, 2, 3 -- r1 = r3 - r2

and 1, 2, 3 -- r1 = r2 AND r3

neg 1, 2 -- r1 = - r2

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 28

15

Multiplication

● Multiplication of 32-bit numbers much be executed with
two instruction if the full 64-bit result is needed: high-
order [0-31] and low-order [32-63]

● There are two types of low-order multiplication, multiply
low-word (mullw) and multiply low immediate (mulli).

● Since there is no difference in the last 32-bits of a
signed/unsigned multiplication, there is no need for two
types of multiply low-word instruction.

● However, high-order multiplication do come in
sign/unsigned flavor (mulhw and mulhwu).

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 29

Division

● The division operation is available in signed and
unsigned format (divw and divwu).

● The quotient is saved in the destination register.
● There are no instruction to obtain the remainder of a

division. It must be calculated manually using a division,
a multiplication and a subtraction.

mullw 1, 3, 4 -- r1 = (r3 * r4) bit [32-63]

mulhw 2, 3, 4 -- r2 = (r3 * r4) bit [0-31]

mullwi 1, 2, 3 -- r1 = r2 * 3

divw 1, 2, 3 -- r1 = r2 / r3

divwu 1, 2, 3 -- r1 = r2 / r3

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 30

16

Floating-point instructions

● A PowerPC processor has 32 floating point registers.
● Numbers in FP registers are stored as double precision

floating-point numbers. (Single precision numbers are
converted to double when stored in registers).

● The PowerPC offers both single precision and double
precision operations.

● When executing single precision operation, the
calculations are executed as double precision and
rounded down to single precision.

● The PowerPC offer special instructions to execute
polynomial calculation.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 31

Loading Constants

● Constants need to be loaded using 2 instructions (since
their 32 bit address is too large to fit in an single
instruction).
lis 3,.LC0@ha --set 16 first bits

la 3,.LC0@l(3) --set 16 last bits

● The @ha and @l keywords allow use to isolate a specific
part of an address without the need to use bit shifting.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 32

17

Code Alignment

● Some architecture require specific aligning of
instructions in memory

● PowerPC also requires an alignment of a least 3.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 33

Instruction Reference

● Here are some of the most common PowerPC assembly
instructions.

● The descriptions were taken from the “PowerPC
Microprocessor Family: The Programming
Environments for 32-Bit Microprocessors”

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 34

18

Load Word and Zero

Syntax:
lwz rD,d(rA)

Operation:
if rA = 0

then b ← 0
else b ← (rA)

EA ← b + EXTS(d)
rD ← MEM(EA, 4)

Description:88
EA is the sum (rA|0) + d. The word in memory addressed by EA is loaded into rD.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 35

Load Word and Zero with Update

Syntax:
lwzu rD,d(rA)

Operation:
EA ← (rA) + EXTS(d)
rD ← MEM(EA, 4)
rA ← EA

Description:
EA is the sum (rA) + d. The word in memory addressed by EA is loaded into rD.
EA is placed into rA.
If rA = 0, or rA = rD, the instruction form is invalid.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 36

19

Load Immediate

Syntax:
li rD,value

Operation:
rD ← value + 0

Description:
The “li” instruction is a mnemonics for “addi rD,0,value”.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 37

Load Address

Syntax:
la rD,disp(rA)

Operation:
rD ← (rA) + disp

Description:
The “la” instruction is a mnemonics for “addi rD,rA,disp”.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 38

20

Load Immediate Shifted

Syntax:
lis rD,value

Operation:
rD ← (SIMM || (16)0)

Description:
The “lis” instruction is a mnemonics for “addis rD,0,value”.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 39

Store Word

Syntax:
stw rS,d(rA)

Operation:
if rA = 0

then b ← 0
else b ← (rA)

EA ← b + EXTS(d)
MEM(EA, 4 ← ¬ rS

Description:
EA is the sum (rA|0) + d. The contents of rS are stored into the word in memory

addressed by EA.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 40

21

Store Word with Update

Syntax:
stwu rS,d(rA)

Operation:
EA ← (rA) + EXTS(d)
MEM(EA, 4) ← (rS)
rA ← EA

Description:
EA is the sum (rA) + d. The contents of rS are stored into the word in memory addressed

by EA.
EA is placed into rA.
If rA = 0, the instruction form is invalid.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 41

Move Register

Syntax:
mr rA,rS

Operation:
rA ← (rS) OR (rs)

Description:
The “mr” instruction is a mnemonics for “or rA,rS,rS”.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 42

22

Move from Link Register

Syntax:
mflr rD

Operation:
rD ← SPR(8)

Description:
The “mflr” instruction is a mnemonics for “mfspr rD,8”.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 43

Move to Link Register

Syntax:
mtlr rD

Operation:
SPR(8) ← (rS)

Description:
The “mtlr” instruction is a mnemonics for “mtspr 8,rD”.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 44

23

Addition

Syntax:
add rD,rA,rB

Operation:
rD ← (rA) + (rB)

Description:
The sum (rA) + (rB) is placed into rD.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 45

Add Immediate

Syntax:
addi rD,rA,SIMM

Operation:
if rA = 0

then rD ← EXTS(SIMM)
else rD ← (rA) + EXTS(SIMM)

Description:
The sum (rA|0) + sign extended SIMM is placed into rD.
NOTE: addi uses the value 0, not the contents of GPR0, if rA = 0.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 46

24

Subtract From

Syntax:
add rD,rA,rB

Operation:
rD ← ¬(rA) + (rB) + 1

Description:
The sum ¬ (rA) + (rB) + 1 is placed into rD. (equivalent to (rB)-(rA))

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 47

Logical And

Syntax:
and rA,rS,rB

Operation:
rA ← (rS) & (rB)

Description:
The contents of rS are ANDed with the contents of rB and the result is placed into rA.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 48

25

Two’s Complement Negation

Syntax:
neg rD,rA

Operation:
rD ← ¬ (rA) + 1

Description:
The value 1 is added to the one’s complement of the value in rA, and the resulting

two’scomplement is placed into rD.
Note: If rA contains the most negative 32-bit number (0x8000_0000), the result is the

most negative number.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 49

Multiply Low Word

Syntax:
mullw rD,rA,rB

Operation:
prod[0–63] ← (rA) * (rB)
rD ← prod[32-63]

Description:
The 32-bit operands are the contents of rA and rB. The low-order 32-bits of the 64-bit

product (rA) * (rB) are placed into rD.
The low-order 32-bits of the product are independent of whether the operands are

regarded as signed or unsigned 32-bit integers.
This instruction can be used with mulhw to calculate a full 64-bit product.
NOTE: This instruction may execute faster on some implementations if rB contains the

operand having the smaller absolute value.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 50

26

Multiply Low Immediate

Syntax:
mulli rD,rA,SIMM

Operation:
prod[0–63] ← (rA) * EXTS(SIMM)
rD ← prod[32-63]

Description:8
The first operand is (rA). The second operand is the sign-extended value of the SIMM

field.
The low-order 32-bits of the 64-bit product of the operands are placed into rD.
Both the operands and the product are interpreted as signed integers. The low-order 32-

bits of the product are calculated independently of whether the operands are treated as
signed or unsigned 32-bit integers.

This instruction can be used with mulhdx or mulhwx to calculate a full 64-bit product.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 51

Multiply High Word

Syntax:
mulhw rD,rA,rB

Operation:
prod[0–63] ← (rA) * (rB)
rD ← prod[0–31]

Description:8
The 64-bit product is formed from the contents of rA and rB. The high-order 32 bits of

the 64-bit product of the operands are placed into rD.
Both the operands and the product are interpreted as signed integers.
This instruction may execute faster on some implementations if rB contains the operand

having the smaller absolute value.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 52

27

Multiply High Word Unsigned

Syntax:
mulhwu rD,rA,rB

Operation:
prod[0–63] ← (rA) * (rB)
rD ← prod[0–31]

Description:8
The 32-bit operands are the contents of rA and rB. The high-order 32 bits of the 64-bit
product of the operands are placed into rD.
This instruction may execute faster on some implementations if rB contains the operand
having the smaller absolute value.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 53

Divide Word

Syntax:
divw rD,rA,rB

Operation:
dividend ← (rA)
divisor ← (rB)
rD ← dividend ¸ divisor

Description:8
The dividend is the contents of rA. The divisor is the contents of rB. The remainder is not

supplied as a result. Both the operands and the quotient are interpreted as signed
integers. The quotient is the unique signed integer that satisfies the equation—dividend
= (quotient * divisor) + r where 0 r < |divisor| (if the dividend is non-negative), and –
|divisor| < r 0 (if the dividend is negative).

If an attempt is made to perform either of the divisions—0x8000_0000 ¸ -1 or
<anything> ¸ 0, then the contents of rD are undefined.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 54

28

Floating Addition (Double)

Syntax:
fadd frD,frA,frB

Operation:
frD ← (frA) + (frB)

Description:8
The floating-point operand in frA is added to the floating-point operand in frB. If the

mostsignificant bit of the resultant significand is not a one, the result is normalized.
The result is rounded to double-precision under control of the floating-point rounding
control field RN of the FPSCR and placed into frD.

If a carry occurs, the sum's significand is shifted right one bit position and the exponent is
increased by one. FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 55

Floating Multiplication (Double)

Syntax:
fmul frD,frA,frC

Operation:
frD ← (frA) * (frC)

Description: 8
The floating-point operand in register frA is multiplied by the floating-point operand in

register frC. If the most-significant bit of the resultant significand is not a one, the
result is normalized.

The result is rounded to double-precision under control of the floating-point rounding
control field RN of the FPSCR and placed into frD.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 56

29

Floating Multiply-Add (Double)

Syntax:
fmadd frD,frA,frC,frB

Operation:
frD ← ((fra) * (frC)) + (frB)

Description: 8
The floating-point operand in register frA is multiplied by the floating-point operand in

register frC. The floating-point operand in register frB is added to this intermediate
result.

If the most-significant bit of the resultant significand is not a one, the result is
normalized. The result is rounded to double-precision under control of the floating-
point rounding control field RN of the FPSCR and placed into frD.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 57

Floating Move Register

Syntax:
fmr frD,frB

Operation:
frD ← (frB)

Description:
The content of register frB is placed into frD.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 58

30

Compare Words

Syntax:
cmpw CRn,rA,rB

Operation:
a ← (rA)
b ← (rB)
if a < b then c ← 0b100

else if a > b then c ← 0b010
else c ← 0b001

CRn ← c
Description:

The contents of rA are compared with the contents of rB, treating the operands as signed
integers. The result of the comparison is placed into CR field CRn.

The “cmpw” instruction is a mnemonics for “cmp 3,0,rA,rB”.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 59

Compare Word Immediate

Syntax:
cmpwi CRn ,rA,value

Operation:
a ← (rA)
if a < EXTS(value) then c ← 0b100

else if a > EXTS(value) then c ← 0b010
else c ← 0b001

CRn ← c
Description:

The contents of rA are compared with the sign-extended value of the value field, treating
the operands as signed integers. The result of the comparison is placed into CR field
CRn.

The “cmpw” instruction is a mnemonics for “cmp 3,0,rA,rB”.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 60

31

Branch

Syntax:
b target_addr

Operation:
NIA ← CIA + EXTS(LI || 0b00)

Description:
Target_addr specifies the branch target address.
The branch target address is the sum of LI || 0b00 sign-extended plus the address of this

instruction.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 61

Branch Not Equal

Syntax:
bne CRn,target

Operation:
if ctr_ok & cond_ok

then NIA ← CIA + EXTS(BD || 0b00)
Description:

The “bne” instruction is a mnemonics for “bc CRn,10,target”.
Target_addr specifies the branch target address.
The branch target address is the sum of LI || 0b00 sign-extended plus the address of this

instruction.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 62

32

Branch to Function

Syntax:
bl target_addr

Operation:
NIA ← CIA + EXTS(LI || 0b00)
LR ← CIA + 4

Description:
Target_addr specifies the branch target address.
The branch target address is the sum of LI || 0b00 sign-extended plus the address of this

instruction.
The effective address of the instruction following the branch instruction is placed into the

link register.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 63

Return from Branch

Syntax:
blr

Operation:
NIA ← LR

Description:
The effective address of the instruction following the branch instruction is taken from the

link register.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 64

33

Hello Word
.section .rodata ! Constant Declaration

.align 2
.LC0:

.string "Hello World“ ! HelloWorld string

.section ".text"
.align 2
.globl main ! Declare main global so the shell can execute it

.type main,@function ! Main function
main:

stwu 1,-16(1) ! Allocate a stackframe of 16 bytes
mflr 0 ! Move link register to register0
stw 0,20(1) ! Store link register in previous stack frame
lis 3,.LC0@ha ! Load first 16 bits of address of string
la 3,.LC0@l(3) ! Load last 16 bits of address of string
crxor 6,6,6 ! Needed for ABI compliance
bl printf ! Call to printf (branch)
lwz 0,20(1) ! Bring back link register from stack frame
mtlr 0 ! Move original link register add in link register
addi 1,1,16 ! Deallocate stackframe
blr ! Return (branch return)

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 65

Temporary Variables and Arithmetic
main: ! Main function

stwu 1,-48(1) ! Allocate stack frame
stw 31,44(1) ! Save value of register31 (non-volatile)
mr 31,1 ! Move SP in register 31
stw 3,8(31) ! Save first arg
stw 4,12(31) ! Save second arg
li 0,5 ! temp = 5
stw 0,16(31) ! x = temp
li 0,6 ! temp = 6
stw 0,20(31) ! y = temp
li 0,7 ! temp = 7
stw 0,24(31) ! z = temp
lwz 9,16(31) ! temp2 = x
lwz 0,20(31) ! temp = y
add 0,9,0 ! temp = temp2 + temp
stw 0,24(31) ! z = temp1
lwz 0,24(31) ! temp = z
mr 3,0 ! Prepare to return z
lwz 11,0(1) ! Get old sp
lwz 31,-4(11) ! Save old value back to 31
mr 1,11 ! Restore old sp to register1
blr ! Return

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 66

34

If statement
C Code:

if(i == 0) {
/* Inside if */
}
/* Outside if */

Assembler:

lwz 0,8(31)
cmpwi 0,0,0 ! Store result in CR0, compare value of register0

! With the value 0
bne 0,.L2 ! Jump, depending on value of CR0
/* Inside if */

.L2:
/* Outside if */

.L3:
lwz 0,12(31)

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 67

For statement
C Code:
for (j = 0; j < 15; j++) {
/* Inside for */
}
/* Outside for */

Assembler:
stw 0,12(31) ! j = 0

.start_for:
lwz 0,12(31) ! temp = j
cmpwi 0,0,14 ! if (j = 14)
ble 0,.in_for ! then goto in_for
b .exit_for ! else goto exit_for

.in_for:
/* Inside for */
lwz 9,12(31) ! temp = j
addi 0,9,1 ! temp = temp + 1
stw 0,12(31) ! j = temp
b .start_for ! goto start_for

.exit_for:
/* Outside for */

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 68

35

Evolution of the PowerPC

● The initial PowerPC included plans for a 64-bit PowerPC
processor.

● This means application compiled for a 32-bit processor
will still function on a 64-bit processor.

● The G5, Apple’s newest line of computer, is equipped
with a 64-bit PowerPC chip.

● The G5 processor is based on IBM’s Power4
architecture.

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 69

Reference
● PowerPC Microprocessor Family: The Programming

Environments for 32-Bit Microprocessors
● Balance of Power: Introducing PowerPC Assembly

Language
(http://www.mactech.com/articles/develop/issue_21/21balance.html)

● System V R4 ABI, PowerPC edition
● The calling sequence and stack frame for Linux

(http://math-atlas.sourceforge.net/devel/atlas_contrib/node93.html)

● Register usage for Linux
(http://math-atlas.sourceforge.net/devel/atlas_contrib/node92.html)

COMP-573A Microcomputers

PowerPC Architecture 6xx Page 70

