
1

COMP-573A Microcomputers

Intel x86 Architecture (I32)
slides by Alexandre Denault

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 1

General Description

● Most popular architecture for personal computers.
● Over 25 years old.
● One of the most complicated to work with.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 2

2

A bit of history …

● 1968: Bob Noyce and Gordon Moore leave Fairchild
Semiconductor to found their own company, “N M Electronics”.
The company was latter renamed to Intel, which is short for
“integrated electronic”.

● 1969: Intel engineer Ted Hoff designs a general-purpose logic
chip that can be programmed to take instructions. A multi-chip
project can now be handle by one chip. This chip was named the
4004.

● 1972: Intel releases the 8008 processor, which is the first 8-bit
microprocessor.

● 1974: Intel debuts the 8080 processor. This processor features a 8-
bit data bus, 16-bit addressing and runs at 2 Mhz.

● 1978: Intel introduces its first x86 chip, the 8086 microprocessor.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 3

The IA-32 (x86) Architecture

● Contains both 16-bit and 32-bit processor.
● Programs written in 1978 for the x85 can still run on

today’s IA-32 microprocessor.
● Contains very few general purpose registers.
● Very large instruction set.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 4

3

Memory Architecture

● The 8088 could address 1 mega-byte of memory.
● However, it has no registers larger than 16-bits.

210 x 210 Bytes = 1024 Bytes x 1024 Bytes = 1MB
210 x 26 Bytes = 1024 Bytes x 64 Bytes = 64 KB

● How could memory addresses higher than 64 KB be
accessed?

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 5

Memory Architecture (cont.)

● The 8088 broke up memory into 'segments' called
paragraphs.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 6

Paragraph 20000 0000 0000 0010 0000
…

Paragraph 10000 0000 0000 0001 0000
…
0000 0000 0000 0000 0010
0000 0000 0000 0000 0001

Paragraph 00000 0000 0000 0000 0000

4

Memory Architecture (cont.)

● The address of a specific byte in memory is the sum, after
an appropriate shift, of two registers.

0010 0010 0111 0001 Segment
0101 1000 1100 0101 Offset

0010 0111 1111 1101 0101 20-bit address

● Intel processors with 32 bit registers still store paragraph
boundary using 16 bits, but uses a 32-bit offset to the
address.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 7

Maximum External Addr. Space

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 8

36 bit address bus64 Gb321995Pentium Pro

-64 Gb322000Pentium IV

-64 Gb321999Pentium III

-64 Gb321997Pentium II

-4 Gb321993Pentium

-4 Gb321989486 DX

Added flat memory model4 Gb321985386 DX

Segment registers point to
descriptor table

16 Mb161982286

64 Kb paragraphs1 Mb1619788086

Memory managementMax Ext. Addr.
Space

Register Sizes
(GP registers)

Date
Introduced

Processor

5

Segment Registers

● The 8088 has four segment registers allowing access four
segments of the memory at the same time. These
registers are still present in today’s Intel architectures.
● CS: The Code Segment is used to address program instructions

only.
● DS: The Data Segment is used to address data.
● SS: The Stack Segment is used by the PUSH, POP, CALL and

RET instruction.
● ES: The Extra Segment is used by resource intensive

application to access other blocks of memory.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 9

Offset Registers

● The 8088 has five registers used to store offsets from the
segment registers.
● IP: The Instruction Pointer contains the offset for the

code segment. Together, they point to the instruction to
be executed by the processor.

● SP: The Stack Pointer contains the offset for the stack
segment. Together, they point to the current stack
position in memory.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 10

6

Offset Registers (cont.)

● BP: The Base Pointer also contains an offset for the
stack segment. Together, they point to another stack
position in memory. (explained latter)

● SI/DI : The source index and the destination index
usually offset for the data segment. However, in special
situation, the destination index offsets the extra
segment.

● These registers are still used today, but have been
expanded to 32 bits. These registers have been
respectively rename EIP, ESP, EBP, ESI and EDI.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 11

Data Registers

● Four other 32-bit registers are each addressable as 32-bit
registers, 16-bit registers (the lower 16 bits), or two 8-bit
registers:

7 0 7 0
+-----------------+--------+--------+
+ EAX | AX AH | AL | Accumulator
+-----------------+--------+--------+
+ EBX | BX BH | BL | Base register
+-----------------+--------+--------+
+ ECX | CX CH | CL | Counter
+-----------------+--------+--------+
+ EDX | DX DH | DL | Bit numbering
+-----------------+--------+--------+
32 15 0

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 12

7

Data Registers (cont.)

● The Accumulator is used with a few arithmetic
instructions, such as MUL and DIV; it is also used for I/O
and many instructions perform more efficiently if they
use EAX, AX or AL rather than any other register.

● The Base register is the only one of these four that can be
used to index into memory; EBX normally points to the
Data Segment.

● The Counter is normally used to control the execution of
loops.

● The Data register is used by a few instructions to extend
the Accumulator to 64 bits.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 13

Status Flag Register
● Set of status bits used to describe different “special” state.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 14

Overflow Flag -- Set if result is too large a positive number or too small a
negative number (excluding sign-bit) to fit in destination operand; cleared
otherwise.

OF11

Sign Flag -- Set equal to high-order bit of result (0 is positive, 1 if negative).SF7

Zero Flag -- Set if result is zero; cleared otherwise.ZF6

Adjust flag -- Set on carry from or borrow to the low order four bits of AL;
cleared otherwise. Used for decimal arithmetic.

AF4

Parity Flag -- Set if low-order eight bits of result contain an even number of
1 bits; cleared otherwise.

PF2

Carry Flag Set on high-order bit carry or borrow; cleared otherwise. CF0

FunctionNameBit

8

Status Flag Register (cont.)

● Complete schematic of flag register:

31 23 17 15 13 9 8 7 6 5 4 3 2 1 0
++---------------+---------------+----------------+--------------+
	V	R		N	I/O	O	D	I	T	S	Z		A		P		C
0 0 0 0 0 0 0 0 0 0 0 0 0 0			0									0		0		1	
	M	F		T	PL	F	F	F	F	F	F		F		F		F
+--+

| | | | | | | | | | | | |
VIRTUAL 8086 MODE---X--------+ | | | | | | | | | | | |

RESUME FLAG---X----------+ | | | | | | | | | | |
NESTED TASK FLAG---X--------------+ | | | | | | | | | |

I/O PRIVILEGE LEVEL---X-----------------+ | | | | | | | | |
OVERFLOW---S---------------------+ | | | | | | | |

DIRECTION FLAG---C-----------------------+ | | | | | | |
INTERRUPT ENABLE---X-------------------------+ | | | | | |

TRAP FLAG---S---------------------------+ | | | | |
SIGN FLAG---S-----------------------------+ | | | |
ZERO FLAG---S-------------------------------+ | | |

AUXILIARY CARRY---S-----------------------------------+ | |
PARITY FLAG---S---------------------------------------+ |
CARRY FLAG---S---+

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 15

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 16

Argument Variables

Internal Marker

Address of Old Base Pointer

Local Variables

Unallocated Space

Previous
stack frame

Current
stack frame

8818

8810

880C

8808

8800
Stack
Pointer

Base
Pointer

The Stack

9

Addressing Memory

● Direct Addressing
Using a variable name to reference memory is called

‘direct’ addressing.
MOVL%EDX,my_var

● Indirect Addressing
Using an offset stored in a register to reference memory is

called ‘indirect’ addressing.
MOVL%EDX,(%EBX)
MOVL%EAX,-8(%EBP)

Only four registers can be used for indirect addressing:
EBX, EBP, ESI, EDI

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 17

Instruction Set
● Most intructions come in three flavors:

● Byte Instructions (b)
● Word Instructions (w)
● Long Instructions (l)

● These three categories denote the size of the operands
given to the function.
For example, the addw instruction will add two word (16

bits) values.
● Current CPU support other data types (such as FP or

MMX). However, these will not be covered in this
course.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 18

10

Move Instructions

● Move instructions are available in three formats : movb,
movw and movl

● They takes two argument, a source and a destination (in
order)

● Operands must be of specific type:

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 19

• movx register, constant
• movx address, address

• movx register, register
• movx constant, register
• movx address, register
• movx register, address

Not AllowedAllowed

Arithmetic Instructions

● Programmers are responsible for keeping track of which
values are signed and unsigned.

● For addition and subtraction, no special operation are
needed (since two’s complement is used).

● However, both signed and unsigned instructions are
provided for some operations.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 20

+2147483648 to –21474836480 to 4294967295long

+32767 to –327680 to 65535word

+127 to –1280 to 255byte

SignedUnsigned

11

Arithmetic Instructions (cont.)

● Simple operations such as addx and subx can be executed
over any registers or memory (some restriction applies).

ADDW %CX,%AX –> AX = AX + CX

● Increment (incx) and decrement (decx) operation are
provided to increase or decrease a value by 1 without the
need of a constant.

INCL %EBX

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 21

Arithmetic Instructions (cont.)

● Multiplication and division instructions require only one
parameter. The other parameter is assume to be in EAX.

● Results of a multiplication are store in EAX (higher order
bits are stored in EDX for long multiplications).

● Results of multiplication are store in EAX. The remainder
is store in AH for byte division and in EDX for larger
divisions.

● Even if the EDX is not used, it is usually a good idea to
clear it before a multiplication or a division.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 22

12

Arithmetic Instructions (cont.)

● Examples of multiplication and division operations:
● Unsigned
MULB %CL -> AX = AL * CL

MULW %CX -> DXAX = AX * CX

MULL %ECX -> EDXEAX = EAX * ECX

MULW my_byte -> AX = AX * my_byte

DIVB %CL -> AL = AL / CL
AH contains the remainder

● Signed
IMULW %DI -> DXAX = AX * DI

IMULL %EDI -> EDXEAX = EAX * EDI

IMULW my_word -> DXAX = AX * my_word

IDIVW my_word -> AX = DXAX / myword
DX contains the remainder

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 23

Logical Operators Instructions

● Logical operators do not need to be called for a specific
format (byte, word, etc). The type of instruction is
determined by the size of the arguments.

● Some logical operators:
● AND : Logical AND
● OR : Logical inclusive OR
● XOR : Logical eXclusive OR
● NOT : Logical negation: form 1's complement (not the same as NEG :

2's complement)
● TEST : Logical AND without affecting destination (not the same as

CMP : substraction)

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 24

13

Jump Instructions

● The JMP instruction can be used to branch the execution of
a program to a target label.

● All Jump instruction exists in several main format :
● Short jump—A near jump where the jump range is limited to –128 to

+127 from the current EIP value.
● Near jump—A jump to an instruction within the current code segment

(the segment currently pointed to by the CS register), sometimes
referred to as an intrasegment jump.

● Far jump—A jump to an instruction located in a different segment
than the current code segment but at the same privilege level,
sometimes referred to as an intersegment jump.

● Task switch—A jump to an instruction located in a different task.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 25

Jump Instructions (cont.)

● The compiler (GCC) will automatically determine which
jump instruction format should be used.

● Conditional jump instructions will branch conditionally on a
value in the status register. Different types of conditional
jumps have different criteria for branching.

● Some conditional jump instructions are specifically
designed for signed or unsigned numbers.

● The Intel reference guide contains a complete list of
available jump instruction.

● The compare (cmp) instruction should be use to set the
status flag used by conditional jump instructions.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 26

14

Stack Instructions

● The Push and Pop instructions can be used to add and
remove data on the stack.

● Like the move instruction, these instructions are available
in three formats:
pushb, pushw, pushl, popb, popw, popl

● These operations will change the value of the stack
pointer (sp).

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 27

Functions Instructions

● The call instruction is use to branch the execution of the
program to a new function.

● Since call is also a branch instruction, there are several
formats for this instruction.

● The ret instruction is used to return the execution of rhe
program to the previous function.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 28

15

Instruction Reference

● Here are some of the most common Intel assembly
instructions.

● The descriptions were taken from “the IA-32 Intel
Architecture Software Developers Manual Volume 2
Instruction Set Reference”

● The instruction format used in the Intel IA-32 Manual and
the instruction format used by Linux is different. Some
arguments (such as destination and source) may be
switched.

● The instructions in the following sections are all in the
“Linux” format.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 29

Move

Syntax:
MOVx SRC, DEST

Operation:
DEST ← SRC

Description:
Copies the first operand (source operand) to the second operand (destination

operand). The source operand can be an immediate value, general-purpose
register, segment register, or memory location; the destination register can be
a general-purpose register, segment register, or memory location. Both
operands must be the same size, which can be a byte, a word, or a doubleword.

The MOV instruction cannot be used to load the CS register. Attempting to do
so results in an invalid opcode exception (#UD). To load the CS register, use
the far JMP, CALL, or RET instruction.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 30

16

Addition

Syntax:
ADDx SRC, DEST

Operation:
DEST ← DEST + SRC

Description:
Adds the first operand (source operand) and the second operand (destination

operand) and stores the result in the destination operand. The destination
operand can be a register or a memory location; the source operand can be an
immediate, a register, or a memory location. (However, two memory operands
cannot be used in one instruction.) When an immediate value is used as an
operand, it is sign-extended to the length of the destination operand format.

The ADD instruction performs integer addition. It evaluates the result for both
signed and unsigned integer operands and sets the OF and CF flags to indicate
a carry (overflow) in the signed or unsigned result, respectively. The SF flag
indicates the sign of the signed result.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 31

Increment

Syntax:
INCx DEST

Operation:
DEST ← DEST +1

Description:
Adds 1 to the destination operand, while preserving the state of the CF flag. The

destination operand can be a register or a memory location. This instruction
allows a loop counter to be updated without disturbing the CF flag. (Use a
ADD instruction with an immediate operand of 1 to perform an increment
operation that does updates the CF flag.)

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 32

17

Unsigned Multiplication

Syntax:
MULx SRC

Operation:
Byte: AX ← AL * SRC
Word: DX:AX ← AX ∗ SRC
Long: EDX:EAX ← EAX ∗ SRC

Description:
Performs an unsigned multiplication of the first operand (destination operand)

and the second operand (source operand) and stores the result in the
destination operand. The destination operand is an implied operand located in
register AL, AX or EAX (depending on the size of the operand); the source
operand is located in a general-purpose register or a memory location.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 33

Signed Multiplication

Syntax: (first form, multiple forms of this operation exists)
IMOVx SRC

Operation:
Byte: AX ← AL * SRC
Word: DX:AX ← AX ∗ SRC
Long: EDX:EAX ← EAX ∗ SRC

Description:
Performs a signed multiplication of two operands. This instruction has three

forms, depending on the number of operands.
• One-operand form: This form is identical to that used by the MUL instruction.

Here, the source operand (in a general-purpose register or memory location) is
multiplied by the value in the AL, AX, or EAX register (depending on the
operand size) and the product is stored in the AX, DX:AX, or EDX:EAX
registers, respectively.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 34

18

Unsigned Division

Syntax:
DIVx SRC

Operation:
Byte: Quotient: AL Remainder: AH ← AX / SRC
Word: Quotient: AX Remainder: DX ← DX:AX / SRC
Long: Quotient: EAX Remainder: EDX ← EDX:EAX / SRC

Description:
Divides (unsigned) the value in the AX, DX:AX, or EDX:EAX registers

(dividend) by the source operand (divisor) and stores the result in the AX
(AH:AL), DX:AX, or EDX:EAX registers. The source operand can be a
general-purpose register or a memory location. The action of this instruction
depends on the operand size (dividend/divisor),

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 35

Logical AND

Syntax:
ANDx SRC, DEST

Operation:
DEST ← DEST AND SRC

Description:
Performs a bitwise AND operation on the destination (second) and source

(first) operands and stores the result in the destination operand location. The
source operand can be an immediate, a register, or a memory location; the
destination operand can be a register or a memory location. (However, two
memory operands cannot be used in one instruction.) Each bit of the result is
set to 1 if both corresponding bits of the first and second operands are 1;
otherwise, it is set to 0.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 36

19

Logical OR

Syntax:
ORx SRC, DEST

Operation:
DEST ← DEST OR SRC

Description:
Performs a bitwise inclusive OR operation between the destination (second)

and source (first) operands and stores the result in the destination operand
location. The source operand can be an immediate, a register, or a memory
location; the destination operand can be a register or a memory location.
(However, two memory operands cannot be used in one instruction.) Each bit
of the result of the OR instruction is set to 0 if both corresponding bits of the
first and second operands are 0; otherwise, each bit is set to 1.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 37

Two’s Complement Negation

Syntax:
NEGx DEST

Operation:
DEST ← - DEST

Description:
Replaces the value of operand (the destination operand) with its two's

complement. (This operation is equivalent to subtracting the operand from 0.)
The destination operand is located in a general-purpose register or a memory
location.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 38

20

One’s Complement Negation

Syntax:
NOTx DEST

Operation:
DEST ← NOT DEST

Description:
Performs a bitwise NOT operation (each 1 is cleared to 0, and each 0 is set to

1) on the destination operand and stores the result in the destination operand
location. The destination operand can be a register or a memory location.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 39

Compare Two Operands
Syntax:

CMPx SRC1, SRC2
Operation:

TEMP ← SRC1 − SignExtend(SRC2)
MODIFY STATUS FLAGS

Description:
Compares the first source operand with the second source operand and sets the

status flags in the EFLAGS register according to the results. The
comparison is performed by subtracting the second operand from the first
operand and then setting the status flags in the same manner as the SUB
instruction. When an immediate value is used as an operand, it is sign-
extended to the length of the first operand.

The CMP instruction is typically used in conjunction with a conditional jump
(Jcc), condition move (CMOVcc), or SETcc instruction. The condition codes
used by the Jcc, CMOVcc, and SETcc instructions are based on the results of
a CMP instruction.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 40

21

Logical Compare

Syntax:
TESTx SRC1, SRC2

Operation:
TEMP ← SRC1 AND SRC2
MODIFY STATUS FLAGS

Description:
Computes the bit-wise logical AND of first operand (source 1 operand) and the

second operand (source 2 operand) and sets the SF, ZF, and PF status flags
according to the result. The result is then discarded.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 41

Jump

Syntax:
JMP DEST

Operation:
Short Jump: EIP ← EIP + DEST
Near Jump: EIP ← DEST

Description:
Transfers program control to a different point in the instruction stream

without recording return information. The destination (target) operand
specifies the address of the instruction being jumped to. This operand can be
an immediate value, a general-purpose register, or a memory location.

This instruction can be used to execute four different types of jumps.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 42

22

Conditional Jump

Syntax:
Jcc DEST

Operation:
IF condition
THEN EIP ← DEST

Description:
Checks the state of one or more of the status flags in the EFLAGS register

(CF, OF, PF, SF, and ZF) and, if the flags are in the specified state (condition),
performs a jump to the target instruction specified by the destination
operand. A condition code (cc) is associated with each instruction to indicate
the condition being tested for. If the condition is not satisfied, the jump is not
performed and execution continues with the instruction following the Jcc
instruction.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 43

Call Procedure

Syntax:
CALL DEST

Operation:
PUSH EIP
EIP ← DEST

Description:
Saves procedure linking information on the stack and branches to the

procedure (called procedure) specified with the destination (target) operand.
The target operand specifies the address of the first instruction in the called
procedure. This operand can be an immediate value, a general purpose
register, or a memory location.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 44

23

Return from Procedure

Syntax:
RET OPTARG

Operation:
POP EIP
POP to nothing OPTARG times

Description:
Transfers program control to a return address located on the top of the stack.

The address is usually placed on the stack by a CALL instruction, and the
return is made to the instruction that follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released
after the return address is popped; the default is none. This operand can be
used to release parameters from the stack that were passed to the called
procedure and are no longer needed.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 45

Push on the Stack

Syntax:
PUSHx SRC

Operation:
ESP ← ESP − x
SS:ESP ← SRC

Description:
Decrements the stack pointer and then stores the source operand on the top

of the stack. The address-size attribute of the stack segment determines the
stack pointer size (16 bits or 32 bits), and the operand-size attribute of the
current code segment determines the amount the stack pointer is decremented
(2 bytes or 4 bytes). For example, if these address- and operand-size attributes
are 32, the 32-bit ESP register (stack pointer) is decremented by 4 and, if they
are 16, the 16-bit SP register is decremented by 2.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 46

24

Pop from Stack

Syntax:
POPx DEST

Operation:
DEST ← SS:ESP
ESP ← ESP + x

Description:
Loads the value from the top of the stack to the location specified with the

destination operand and then increments the stack pointer. The destination
operand can be a general-purpose register, memory location, or segment
register.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 47

No Operation

Syntax:
NOP

Operation:
None

Description:
Performs no operation. This instruction is a one-byte instruction that takes up

space in the instruction stream but does not affect the machine context, except
the EIP register.

The NOP instruction is an alias mnemonic for the XCHG (E)AX, (E)AX
instruction.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 48

25

Struct. of an Assembly Prog.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 49

.section .rodata
.LC0:

.string "Hello World\n"

.align 4
.text

.globl main
.type main,@function

main:
pushl %ebp
movl %esp, %ebp
subl $8, %esp
andl $-16, %esp
subl $12, %esp
pushl $.LC0
call printf
leave
ret

Constants Declaration

Function Declaration

Function Code

Code Alignment

Constants Declaration

● Constants should be declare at the beginning of the file
(though gcc sometimes puts them at the end).

● Most common type of constants are
● string
● byte
● word
● long

● Can create array of constants (see gas manual).

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 50

26

Code Alignment

● Some architecture require specific aligning of instructions
in memory (x86 requires an alignment of a least 3).

● Code takes a little more space in memory (because of the
padding).

● Makes code easier to debug by aligning instructions in
memory.

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 51

Hello Word
.section .rodata /* Constant Declaration */
.LC0: .string "Hello World\n" /* Hello World string */

.text

.globl main
.type main,@function /* Make main global so the shell can

execute it */
main:

pushl %ebp /* Save the old base pointer */
movl %esp, %ebp /* Set the base pointer to the current

position of the stack */
pushl $.LC0 /* Pushes the string on the stack */
call printf /* Calls the printf function */
addl $4, %esp /* Removes the printf arguments from

the stack */
movl %ebp, %esp /* Restores the old stack pointer */
popl %ebp /* Restores the old base pointer */

ret /* Return from this function */

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 52

27

Allocating space on stack
...
pushl %ebp /* Save the old base pointer */
movl %esp, %ebp /* Set the base pointer to the current

position of the stack */

subl $12, %esp /* Allocate 3*4 bytes on stack for
x,y,z */

movl $3, -4(%ebp) /* x = 3 */
movl $4, -8(%ebp) /* y = 4 */
movl $5, -12(%ebp) /* x = 5 */

...

addl $12, %esp /* Restore space on the stack */

movl %ebp, %esp /* Restores the old stack pointer */
popl %ebp /* Restores the old base pointer */

...

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 53

Calling a C function

...
.LC0: .string "Print test x=%i, y=%i, z=%i\n"

...

movl $3, -4(%ebp) /* x = 3 */
movl $4, -8(%ebp) /* y = 4 */
movl $5, -12(%ebp) /* z = 5 */

pushl -12(%ebp) /* Push arguments on stack */
pushl -8(%ebp) /* Notice that arguments are */
pushl -4(%ebp) /* pushed in inverse order */
pushl $.LC0
call printf /* Calls printf */
addl $16, %esp /* Erase arguments from stack */

...

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 54

28

Retrieving Arguments
.type add,@function

add:
pushl %ebp /* Save the old base pointer */
movl %esp, %ebp /* Set the base pointer to the current

position of the stack */
subl $12, %esp /* Allocate space for a,b,c */

/* Since we can't move from memory
to memory, we use eax as our
temp register */

movl 8(%ebp), %eax /* temp = x */
movl %eax, -4(%ebp) /* a = temp */
movl 12(%ebp), %eax /* temp = y */
movl %eax, -8(%ebp) /* b = temp */

movl -8(%ebp), %eax /* temp = a */
addl -4(%ebp), %eax /* temp = b + temp */
movl %eax, -12(%ebp) /* c = temp */

...

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 55

If statement

C Code:

if(i == 0) {
/* Inside if */
}
/* Outside if */

Assembler:

cmpl $0, -4(%ebp)
jne .notif
/* Inside if */

.notif:
/* Outside if */

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 56

29

For statement
C Code:

for (j = 0; j++; j < 15) {
/* Inside for */
}
/* Outside for */

Assembler:
movl $0, -8(%ebp)
.start_for:

cmpl $14, -8(%ebp)
jle .in_for
jmp .exit_for

.in_for:
/* Inside for */
incl (%eax)
jmp .start_for

.exit_for:
/* Outside for */

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 57

Evolution of the x86

● Features introduce in the 286 :
● Protected mode operations (descriptor tables)
● Virtual memory management
● New protection mecanism (segment limit checking, etc)

● Features introduce in the 386 :
● First 32-bit processor of the x86 family
● New virtual mode for executing 8086 and 8088 applicaiotn
● Flat memory model
● Paging (fixed 4-Kb page size)
● Limited parallele stages (6 stages)

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 58

30

Evolution of the x86 (cont.)

● Features introduce in the 486 :
● Improved parallele execution
● Integrated FPU (Floating Point Unit)
● On-chip level 1 cache
● Power management (late in the series)

● Features introduce in the Pentium :
● Addition of another execution pipeline (making the architecture

superscaler)
● Branch prediction
● Built-in multi-processor support
● MMX (Multimedia Extensions)

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 59

Evolution of the x86 (cont.)

● Features introduce in the Pentium Pro:
● Addition of another execution pipeline (bringing the total up to

3 pipelines)
● Dynamic Execution (out-of-order execution, superior branch

prediction, flow analysis, etc)
● On-chip level 2 cache
● No MMX

● Features introduce in the Pentium II:
● Similar to Pentium Pro, but with MMX
● Cartridge design
● Improved power management (sleep, etc)

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 60

31

Evolution of the x86 (cont.)

● Features introduce in the Pentium III:
● Streaming SIMD Extensions (SSE)

● Features introduce in the Pentium VI:
● First Implementation of NetBurst micro-architecture

● Rapid Execution Engine
● Hyper Pipeline Technology

● Streaming SIMD Extensions 2 (SSE2)

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 61

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 62

32

Pentium 4 vs Athlon XP+

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 63

● New net-burst
architecture

● 2 double-speed ALU and
1 FPU

● Streaming SIMD
Extensions 2 (SSE)

● 20 levels of pipelines
● L1 cache replaced by

8kb dual cache

● Tradditional x86
architecture

● 3 ALU and 3 FPU

● Streaming SIMD
Extensions (SSE)

● 11 levels of pipelines

● 64 kb L1 cache

References

● The IA-32 Intel Architecture Software Developers Manual
Volume 1,2 and 3

● The Floppy Textbook (1999 edition)
● Intel Assembler 80x86 CodeTable

http://www.jegerlehner.ch/intel/

● UserFriendly Comics
http://ars.userfriendly.org/cartoons/?id=19990328

COMP-573A Microcomputers

Intel X86 Architecture (I32) Page 64

