
The meaning of OO, the conclusion

Comp-304 : The meaning of OO, the conclusion
Lecture 7

Alexandre Denault
Original notes by Hans Vangheluwe

Computer Science
McGill University

Fall 2006 



Recap

1)Encapsulated
2)State Retention
3)Implementation / Information Hiding
4)Object Identity
5)Messages
6)Classes
7)Inheritance
8)Polymorphism
9)Generacity



Classes

■ A class is the stencil from which objects are created 
(instantiated).

■ Each object has the same structure and behavior as the 
class from which it is instantiated.
● same attributes (same name and types)
● same methods (same name and signature)

● If object obj belongs to class C
● then obj is an instance of C.

● So, how do we tell objects apart?
● Object Identity



Instantiation

c1

x:int
y:int

int m()

o1:c1

x = 1
y = 1

int m() o2:c1

x = 2
y = 3

int m()o3:c1

x = 2
y = 3
int m()

I
n
s
t
a
n
t
i
a
t
i
o
n



Classes vs Objects

■ Classes are static and are evaluated at compile time.
 Only one copy of the class exist.
 Memory to store methods is only allocated once.

■ Objects are dynamic and are created at run time.
 One copy of the object is created every time the object is 

instantiated
 Thus, memory to store the attributes is allocated for every 

instantiated object.



Instantiating Ghosts

Class
Ghost



Instantiating Pellets

Class
Pellets



Inheritance

■ Suppose you have classes c1 and c2. At design time, 
you notice that everything in c1 (attributes and methods) 
should also be in c2, plus some extra stuff.

■ Instead of rewriting all of c1's code into c2, we say that 
c2 inherits from c1.

■ Thus, c2 has defined on itself (implicitly) all the attributes 
and methods of c1, as if the attributes and methods had 
been defined in c2 itself.



Relationship

■ Inheritance is an “is a” relationship
■ Suppose we have a class MotorVehicle

 A Automobile is a MotorVehicle
 A Motorcycle is a MotorVehicle

■ We call MotorVehicle the superclass and Automobile is a 
subclass
 MotorVehicle is more generalized
 Automobile is more specialized



Specialization

Square
x:int
int area()

s
p
e
c
i
a
l
i
z
e
d

g
e
n
e
r
a
l
i
z
e
d

superclass

subclass

Cube
x:int
int area()
int volume()



Type Family

■ A type family is defined by a type hierarchy.
■ At the top of the hierarchy is a supertype that defines 

behavior common to all family members.
■ Other members are subtypes of this supertype.
■ A hierarchy can have many levels.
■ Type hierarchy can be used

 to define multiple implementations of a type that are more 
efficient under particular circumstances.

➔ Vector & LinkedList implement Collection
 to extend the behavior of a simple type by providing extra 

methods
➔ BufferedReader extends Reader



Substitution Principal

■ A supertypes behavior must be supported by all 
subtypes.

■ Therefore, in any situation in which a supertype can be 
used, it can be substituted by a subtype.

■ Most compilers enforces this by only allowing extensions 
to a type 
 you can only redefine and add methods, not remove them.

■ The substitution principle provides abstraction by 
specification for type hierarchies:
 Subtypes behave in accordance with the specification in their 

supertype.



Inheritance In Pacman

Game
Object

Character Pellet

Player Ghost Super
Pellet



Multiple Inheritance

■ Many classes can inherit from one class
■ One class can inherit from many classes

 Why is this good ?
 Why is this bad?



The Good

■ Allows code reuse
 code in superclasses doesn't have to be rewritten in 

subclasses
■ Ease of maintenance 

 if we add an attribute to a superclass, all subclasses will 
automatically inherit it



The Bad

■ If one class can inherit 
from many classes, we 
may get multiple 
inheritance

■ Which x should C3 
inherit, the one from C1 
or the one from C2?

■ How can this be taken 
care of?

C1
x:int
int m()

C2
x:int
int n()

C3
x:int
int m()
int n()



The Worse

■ If many classes can 
inherit from one class, we 
may get repeated 
inheritance

■ C1 and C2 inherit x from 
C0. Now, they are all the 
“same” x, but which x 
does C3 inherit?

C1
x:int
...

C2
x:int
...

C3
x:int
...

C0
x:int
...



Polymorphism

■ A single method (or attribute) defined on more than one 
class that may take on different implementations in each 
different class

■ An attribute or variable that may refer to objects of 
different classes at different times during program 
execution

■ Polymorphism literally means many forms in Greek



Real type vs Apparent type

■ Collection myVar = new LinkedList()
■ The apparent type of myVar is Collection.

 At compile time, the compiler only keeps track of the apparent 
type of a variable.

■ The real type of myVar is LinkedList.
 At run time, in most programming language, the application 

keeps track of the real type of a variable.



Example of Polymorphism

Object
objName:str
show()

String
objName:str
show()
show(int)

Tuple
objName:str
show()
show(int)

Number
objName:str
show()
show(int)

superclass

subclasses



First definition

■ Method show() is a form of polymorphism, as per the first 
definition.

■ When we call someObject.show(), the object which is 
being referenced will know how to show itself

■ It must be ensured that show() is properly implemented 
for each subclass (and possibly the superclass) and that 
the user need not worry about the implementation



Which show() to call?

■ Which show() to execute 
will be determined at run-
time (and NOT at 
compile-time). This is 
known as dynamic, run-
time or late binding

■ Consider this code

Object o
o = Object.new()
s = String.new()
t = Tuple.new()
...
if user says string : o = s
else : o = t
...
o.show()



Second Definition

■ At run-time, the object o may be an object of type String 
or of type Tuple.

■ What o actually is will only be determined at run-time, 
after the user's input.

■ When o.show() is executed, the method show() of the 
appropriate object will be executed.

■ Attribute o is an example of polymorphism, as per the 
second definition, because it can point to objects of 
different types.



Overloading vs Overriding

■ Overriding is the redefinition of a method defined on a 
class C in one of C's subclasses.

■ Overloading of a name or symbol occurs when several 
operations (or operators) defined on the same class 
have that name or symbol. 
 We say that the name or symbol is overloaded.



Overridding

■ show() is an example of overriding because subclasses 
Number, String and Tuple redefined show() to suit their 
needs.

■ If we wish to actually execute show() of the superclass 
(Object), we would execute super.show() in the subclass.

● Overriding can also be used to cancel certain inherited 
methods.
● Suppose we have a subclass Hash that cannot show itself, then 

we can override show() in class Hash to return some error.
● This is not clean O.O., but it is a practical solution.



Overloading

■ show(int) is an example of overloading
 show() will show the object at some default size
 show(int) will show the object at some ratio, passed as an 

argument
■ Which method will be executed depends on which 

method signature is used to call it.



Pacman : show()



More tricky

■ If B and C are subclasses of A.
■ Class D has the following methods.

 show(B b)
 show(C c)

■ What happens if?
 A var = new B();
 d.show(var)

■ Depends on the lookup:
 Lookup uses apparent type : call is ambiguous
 Lookup is dynamic : call to show(B b) is made



Genericity

■ Imagine I spend thousands of dollars developing an 
algorithm to sort trees of integers.

■ I don't want to rebuild the algorithm if I store floats or 
strings in the trees.

■ I want a generic algorithm for all trees containing items 
that can be compared.

■ Solution : Genericity (also known as templates)



Definition

■ Genericity – one or more classes that are used internally 
by some class and are only supplied at run-time (or upon 
instantiation)

■ Genericity can be emulated using inheritance.



Suppose ...

■ Suppose
 we code a class IntArray which ENTIRELY deals with the ins 

and outs of arrays and array operations (the array holds ints)
■ Suppose

 we code a class StrArray which ENTIRELY deals with the ins 
and out of arrays and array operations (the array holds strs)

■ We will notice that all of the code in IntArray and StrArray 
will be identical except for the type of element that the 
array holds.

■ Instead of having two (or more) separate classes, we 
should have one class called Array and parameterize it.

■ We write Array <ElementType> where ElementType will 
be the class (or type) of the element that the array will 
store.


