Composite

Comp-304 : Composite
Lecture 25

Alexandre Denault
Original notes by Hans Vangheluwe
Computer Science
McGill University
Fall 2007

£
0
0
s 4
Q
)

Scene Graphs

Universe

T

Room 1 Room 2

U

Desk Bed Wardrobe

A =\

Books Lamp Doors Drawers

y

' Hierarchy

B Elements are place in a hierarchical structure for
efficiency reasons.

« Makes culling faster and easier.

B |n such a structure, we want to manipulate the composite
nodes and the leaf nodes in a similar way.

+ Bounding Boxes
+ Scaling, Rotation, Translation

y

' Composite Pattern

m Compose objects into tree structures.

® Allow for uniform treatment of
+ Atomic/primitive Objects
+ Composite Objects

' Composite Pattern

® Compose objects into tree structures to represent part or
whole hierarchies.

m Composite lets clients treat individual objects and
compositions of objects uniformly. This is called
recursive composition.

y

Scaling

Universe

Desk Bed Wardrobe

A =\

Books Lamp Doors Drawers

y

' Scaling Explained

m Clients can use the scale command on any node, sub-
components will also be scaled.

B The user doesn't need to worry about the type of object
he is dealing with.

B To make this work, all components must implement the
scale command.

+ Must have the same interface.

y

' Consequences

B Makes the client simple.

+ Client doesn't need to check if it's dealing with a composite or a
leaf.

m Easier to add new kinds of components.
+ Either composite or leaves.

B \Makes your design overly general.
+ This has the disadvantage of making it difficult to control which

components can be part of a composite.

+ You will most likely need to do runtime checks.

Class Diagram

Client Componert

+operation|...)

+addicomp Component)
+remove(comp. Component)
+getChildrenicomp; Component) <&

‘? icamplete, disjoint]

chilgren

Leaf Compasite

+operation(...) +operation(...)

+add(comp: Caomponent)
Hemove(comp: Compaonent)
+getChildren{comp: Component)

' Problem?

® \Ve already have problems with this diagram.

® Component is an abstract method, so leaf must
implement the add/remove methods.

B But does leaf need those methods?

m Simplest solution is to raise an exception when those
methods a called.

« Bad design!

y

Class Diagram, Take 2

Client

Componert

+operation|...)
+addicomp Component)
tremove(comp. Component)

+gefChidrenfcomp. Component) <&

? lcomplete, disjoint)

Leaf

Composite

+operation(...)

+add{comp: Component) {raises Exception}

+operation(...)
+add{comp Component)

+remave(comp: Component) {raises Exception} +remave(comp: Component)
+getChildren{comp: Compaonent) { returns null} +getChildren{comp: Compaonent)

chil

Aren

' Imp. Conc.: Add/ Remove

B S0, where should the add/remove methods be declare?

y

' Add/Remove

® S0, where should the add/remove methods be declare?

m |[f we declare it in component (component-level), then the
leafs will have meaningless methods.
+ Bad Design!

® |f we declare the methods only in the composite
(composite-level), then we break the abstraction.

+ Client needs to know the difference between composite and
leaf.

®m \Who keeps references to the children, the component or
the composite?
« At the component level, this would be bad design.
+ In addition, there is a memory penalty since leaf will also have

a list for children. '

Safety vs Transparency

Componert Component
+operation|...) +operationy...)
+add(comp: Compaonent)
+remove(comp: Component)
< +getChildren(comp: Companent) <&
iamplete, disjaint chilkiren iamplete, disjoint chilliren
Leaf Composite Leaf Composite
+operation(...) +operation(...) +aperation(...) +operation(...)

+add{comp: Component)
+Hemove(comp: Component)
+getChildren(comp: Component)

Safety Transparency

y

Multiple Parents

® \What happens if a child has multiple parents?

Scale (0.5) — / \

Room 2

Universe

Room 1

NN

Desk

A

Door

Books

Lamp

Wardrobe

O\

Doors

Drawers ‘

' Other Implementation Concerns

®m Child Ordering : if we draw shapes, we need to know
which shape is above other shapes.

« We can just store the children in order, but we need the proper
data structure for that.

m Caching children lookup: Each composite caches it's
number of children.

-+ If a new composite is added, we can easily compute the
number of children.

« Again, memory vs speed.
® \Who should delete?
+ Sending delete to a component, should we cascade delete or

not.

Example

Inventories

& Player Inventary

i

Capacity | 0716 Weight 0.0/8.0

Capacity © 09 Weight 0.0/100.0

WorldObjects

WaorldObject

getid(): Id
getP osition(): P osition
getShape() Shape —
getl ame(): Name
isvisible(): boolean
addObject(w o WorldObject)
remaveCbjectiwa: WaorldObject) ro
getObjects() Set<WorldObject>

1

termObject PlayerObject

Which cohesion problem can be found here?

Bob

T

Wallet

i

Currency

In action

Backpack

AN

Pencil case

|

Apple

Pencil

B LayeredPaneDemo

Choose Duke's Layer and Position

Cyan (2) - Top Position in Layer

Move the Mouse to Mowve Duke
Yellow (0)

Second Example

Frame

L

Layered Pane Layered Pane
ComboBox Label
CheckBox Label
Label
Label

Label ‘

Swing

JTextField
‘ Ubject — JText ﬂ“r
T JTexthrea
Component JComboBox
T JLabel
Container
£|h z|5 JList
‘Windaw ‘JCGmpanent IWlenuBar
T T JOptionFane
Frame Dialog
JFanel
JFrame JDialog
JscrollBar
AbstractButtond JEUtton

