
Collaboration Diagrams

Comp-304 : Collaboration Diagrams
Lecture 11

Alexandre Denault
Original notes by Hans Vangheluwe

Computer Science
McGill University

Fall 2006 



Dynamic

■ Class diagrams are composed of static entities.
 Classes, packages, etc

■ Interaction diagrams describe the behavior of an 
application.
 They are dynamic in nature.
 Thus, they are composed of dynamic entities : objects.

■ We will focus on two kinds of interaction diagrams :
 Collaboration Diagrams
 Sequence Diagrams



Behavior

■ Object Interaction diagrams depict dynamic, run-time 
behavior
 communication between objects via messages
 sequence of transactions in a dialog between a user and a 

system
 one trace of behavior is ideally one use case

■ With interaction diagram, we introduce the notion of time.



Collaboration Diagrams

■ Collaboration diagrams represent objects in a system an 
their associations.

■ They are composed of three elements:
 Objects
 Associations
 Messages



Sequence Diagrams

■ Sequence diagrams 
illustrate the sequence 
of actions that occur in a 
system.

■ They are composed of 2 
elements
 Object
 Messages



Sequence VS Collaboration

■ Both diagrams are illustrate interaction.
 Sequence is used to illustrate temporal interactions.
 Collaboration is better suited to display the association 

between the objects.
■ Given enough information, a sequence diagram can be 

converted into a collaboration diagrams (and vice-versa).



Use Case

■ Use case is a technique for capturing functional 
requirements of systems and systems-of-systems.

■ Each use case focuses on describing how to achieve a 
goal or task.

■ For software, multiple use cases are often necessary to 
fully describe the functionality of that software.



Trace of Behavior

■ Imagine you go to the ATM
 System : waiting for card
 User: insert card
 System : ask for pin
 User: enter pin
 System : verify pin
 ...

■ Once you have traversed a use case, you can figure out 
how many objects are created and what messages are 
passed between them



Setting up our example

■ Consider the following class diagram.

■ Suppose some external call to an instance of Aircraft 
executes land(), a public method.

■ In turn, land() executes setangle() of some instance of 
Flap.



Collaboration Diagram

■ Remember, we are depicting the interaction between 
instances, not classes.

■ ac1 has a reference to a Flap named leftFlap.
■ In the code of the method land(), there is a call 

leftFlap.setangle(int)



A few things to note

■ To depict a message, we draw a small arrow from the 
sender object to the target object, this shows the 
direction of communication

■ With the arrow is the operation name we desire to 
execute, along with all arguments

■ The arrow is parallel to a line, which depicts there is a 
link between the objects (usually by a class association, 
but not necessarily)



No association?

■ If objects aren't linked by association, then how could 
they be linked?

■ Suppose o1 sent o2 a reference to itself. So, o2 may 
refer to o1 (via the reference) even though there is no 
association between the classes of o1 and o2.

■ This is known as a dynamic reference.
■ This reference also allows a target object to “callback” a 

sender object.



Callback

■ The more formal description of callback is executable 
code that is passed as an argument to other code.

■ However, the term callback is also used when a 
reference is passed to achieve the same thing.

■ Callbacks are often used in asynchronous messaging.
■ A piece of code or a reference is assigned to do 

something when a specific event occurs.
 i.e. Swing and an ActionListener



Original Execution

■ The following diagram is exactly the same as the 
previous diagram, except that it shows which 
objectName.ClassName.methodName(args) was 
originally executed.

■ Useful if we want to see exactly where the execution 
started.



Order

■ Suppose we wanted to verify the angle first, then set it, 
how do we depict the order in which the calls should be 
made.

■ We simply need to add numbers to the messages to 
show the sequence of the calls.



Polymorphism

■ Polymorphism is a problem in object interaction.
■ Suppose we want to send the message show() to a 

Shape object.
 That could be an instance of Triangle, Rectangle or Square at 

run-time.
 How do we depict this in a collaboration diagram?

■ Usually, we are certain that o1 sends a message to o2
■ Also, suppose that Triangle, Rectangle and Square are 

subclasses of Shape.



Polymorphism (cont.)

■ Make the target object's class the lowest class in the 
inheritance hierarchy that is a superclass of all the 
classes to which the target object may belong to.

■ Put the superclass name in parenthesis to show that it 
will be evaluated at run-time.

■ This is a form of substitutability.



Iterated Messages

■ Suppose we have an object DrawArea which has a 
shapes array of Polygons (Triangles, Rectangles and 
Squares) that belong to its area.

■ We want to repeatedly send the message show() to all 
the constituent objects (Polygons) of the aggregate 
object (DrawArea).

■ Iterator Pattern (a design pattern) can be used as a 
traversal method.



Iterated Messages (cont.)

■ Notice the aggregate connector.
■ show() message is called many times (the *)
■ DrawArea may have 0 or more Polygons in its array 

named shapes.
■ Target object is unnamed and double boxed to show 

multiplicity.



Referring to Self

■ When an object refers to self, it is referring to its own 
object handle.
 In Python, we also use the keyword self
 In Java, C++ and PHP, we use the keyword this
 In Visual Basic, we use the keyword me

■ This is useful to
 Pass the target object a reference to the sender object (for 

callbacks)
● Send a message to itself



Passing a reference to self

■ In message, just add self as an argument.



Sending a message to self

■ There are two ways to depict this.



Why send a message to self?

■ Think of it as implementation / information hiding.
 We don't want to show how a variable is stored or manipulated.

➔ get/set (accessor/mutator) methods
■ It may sound weird, but we might want to hide 

implementation details from methods within the same 
class (especially if those methods are public).


