[teration Abstraction

Comp-303 : Programming Techniques

Lecture &

Alexandre Denault

Computer Science
McGill University
Winter 2004

February 16, 2004 Lecture 8 — Comp 303 : Programming Techniques Page 1

Last lecture . ..

Exceptions are thrown under exceptional conditions. The
should not be used for regular control flow.

Exceptions move conditions from REQUIRES clause to
EFFECTS clause.

Checked exceptions are declared in method header and must be

caught or propagated by caller.

Unchecked exceptions do not have to be declared and are

propagated automatically.
A caught exception can be reflected or masked.

When using Defensive Programming, all sources of errors must

be checked, even the unlikely and the impossible.

February 16,

2004 Lecture 8 — Comp 303 : Programming Techniques Page 2

Announcements . . .

e The project Req&Spec Document and the first Assignment are
due February 3rd.

— Req&Spec Document before end of class.

— Assignment 1 paper in drop off box before 23:55 (or before
the T.A. picks it up Wednesday)

— Assignment 1 electronic before 23:55 on Web CT (or you

will be using your late days)
e Massive update of the website.

e At then end of the lecture, I'll talk a little about February.

February 16, 2004 Lecture 8 — Comp 303 : Programming Techniques Page 3

The Iteration Game

N\
HENe
M\ E>O

February 16, 2004 Lecture 8 — Comp 303 : Programming Techniques Page 4

[teration Abstraction

e It is often necessary to perform some action on all elements of
a collection

for all elements of an IntSet

do action

e For example, the following function will need to visit all the
elements of an IntSet.

public static int getTotal (IntSet s)
throws NullPointerException
// EFFECT: If s is null throws
// NullPointerException else returns

// the sum of the elements of s

February 16, 2004 Lecture 8 — Comp 303 : Programming Techniques Page 5

A first implementation of setSum

public static int getTotal (IntSet s)
throws NullPointerException {

int [] a = new int[s.size()];

int sum = 0;

// save each element from the set into a, sum it, remove it
for (int i = 0; i < a.length; i++) {

al i] = s.choose ();

sum = sum + a [i];

s.remove(a [1]1);

// restore elements of s
for (int i = 0; i < a.length; i++)

s.insert(a [i 1);

return sum;

February 16, 2004 Lecture 8 — Comp 303 : Programming Techniques Page 6

Problems with this approach

We need 3 calls per element: choose + remove + insert.

This is inefficient.

We could implement getTotal within the IntSet datatype.

However,

— This is not a general operation.

— It is impossible to foresee all ways to manipulate all
elements of IntSet.

— There might be more than one way to calculate the sum.

Instead, we could create an operation returning array of

elements.

February 16,

2004 Lecture 8 — Comp 303 : Programming Techniques

Page 7

Second 1mplementation of getTotal

public static int getTotal (IntSet s) {

// a = array with all elements of s

int [] a = s.members ();

int sum = 0;
// sum all elements of array

for (int i = 0; i < a.length; i++) {

sum = sum + a [1];

return sum;

February 16, 2004 Lecture 8 — Comp 303 : Programming Techniques Page 8

Problems with this approach

e This is inefficient if IntSet is large.

e It requires the creation of a large data structure just to iterate

over all elements.

e Sometimes not all elements are needed. Too much work is done
in advance. e.g. sum all the negative elements

e Instead, we could return the representing vector of IntSet.

e This exposes the representation and opens up all kinds of abuse
by user program. In other words, it breaks the abstraction.

February 16, 2004 Lecture 8 — Comp 303 : Programming Techniques Page 9

Problems with all approaches

None of these solutions are general.

Iterating over a set of Integers should be similar to iterating
over

— a bag of Integers

— an array of Integers

— a vector of Integers

In our case, iteration could be described as

Give me each Integer in this collection, one by one, in

some order.

This is iteration abstraction.

February 16,

2004 Lecture 8 — Comp 303 : Programming Techniques

Page 10

An iterator object, as defined by Java

e [terators are defined in Java.Util

e The NoSuchElementException is an unchecked exception.

public interface Iterator {
public boolean hasNext ();
// EFFECTS: Returns true if there are no more

// elements else returns false

public Object next ();
throws NoSuchElementException;
// MODIFIES: this
// EFFECTS: If there are more results to yield, returns
// the next result and modifies the state of this to
// to record the yield.
// Otherwise, throws NoSuchElementException

February 16, 2004 Lecture 8 — Comp 303 : Programming Techniques Page 11

IntSet with iterator specification

public class IntSet {
// as before plus:

public Iterator elements ()
// EFFECT: Returns a generator that will produce
// all elements of this (as Integers), each exactly
// once, in arbitrary order.
// REQUIRES: this must not be modified while the

// generator is in use.

February 16, 2004 Lecture 8 — Comp 303 : Programming Techniques Page 12

Iterators and generators

e An iterator is a procedure that returns a generator object. A

data abstraction can have one or more iterator methods.

e A generator (implements java.util.Iterator) is an object that
produces the elements. It has methods to get the next element
and to determine whether there are any more elements. The
generator’s type is a subtype of Iterator. As an object it can be
passed to other methods.

e The specification of an iterator defines the behavior of the
generator; a generator has no specification of its own. The
iterator specification often includes a requires clause at the end
constraining the code that uses the generator.

February 16, 2004 Lecture 8 — Comp 303 : Programming Techniques Page 13

Third implementation of getTotal

public static int getTotal (IntSet s) {

Iterator g = s.elements ();

int sum = O;

while (g.hasNext())

sum = sum + ((Integer) g.next()) . intValue;

return sum;

February 16, 2004 Lecture 8 — Comp 303 : Programming Techniques Page 14

Third implementation of getTotal / exceptions

public static int getTotal (IntSet s) {

Iterator g = s.elements ();

int sum = O;
try {
while (true) sum = sum + ((Integer) g.next()) . intValue;

} catch (NoSuchElementException e) { }

return sum;

February 16, 2004 Lecture 8 — Comp 303 : Programming Techniques Page 15

Implementing Iterators

e An Iterator’s implementation requires a class for the associated

generator.

e The generator class is a inner class: it is nested inside the class
containing the iterator and can access the private information
of its containing class (when that information is passed through

the iterator procedure).

e The generator class defines a subtype of (implements) the

Iterator interface.

e The implementation of the generator assumes that using code
obeys constraints imposed on it by the requires clause of the

1terator.

February 16, 2004 Lecture 8 — Comp 303 : Programming Techniques Page 16

Implementation of elements Iterator

private Vector els;

public Iterator elements ()

{ return new IntGenerator (this); }

// inner class

private class IntGenerator implements Iterator {

private IntSet s; // the IntSet being iterated

private int n; // index of the next element to consider

IntGenerator (IntSet is) {
// REQUIRES: is != null

s = 1is;

n = 0;

public boolean hasNext () { return n < s.els.size(); }

February 16, 2004 Lecture 8 — Comp 303 : Programming Techniques Page 17

Implementation of elements Iterator

public Object next () throws NoSuchElementException {

if (n < s.els.size()) {
Integer result = s.els.get(n);
n++;
return result;
} else {

throw NoSuchElementException("IntSet.elements");

February 16, 2004 Lecture 8 — Comp 303 : Programming Techniques Page 18

Implementation of terms Iterator

private int[] trms;

private int deg;
public Iterator terms () { return new PolyGen (this); }

// inner class

private class PolyGen implements Iterator {

private Poly p; // the IntSet being iterated

private int n; // index of the next term to consider

PolyGen (Poly it) {
// REQUIRES: it != null

p = it;
if (p.trms[0] ==0) n = 1; else n = 0;

February 16, 2004 Lecture 8 — Comp 303 : Programming Techniques Page 19

Implementation of terms Iterator

public boolean hasNext () { return n <= p.deg; }
public Object next () throws NoSuchElementException {

for (int e = n; e <= p.deg; e++)
if (p.trms[e] != 0) {

n=-e+ 1;

return new Integer (e);

}
throw NoSuchElementException("Poly.terms");

February 16, 2004 Lecture 8 — Comp 303 : Programming Techniques Page 20

An iterator to generate Prime numbers

public class Num {
public static Iterator allPrimes ()

{ return new PrimesGenerator (); }

// inner class

private class PrimesGenerator implements Iterator {
private Vector ps; // primes yielded
private int p; // next candidate

PrimesGenerator () { p = 2; ps = new Vector (); }

public boolean hasNext () { return true; }

February 16, 2004 Lecture 8 — Comp 303 : Programming Techniques Page 21

An iterator to generate Prime numbers

public Object next () {
if (p == 2) { p = 3; return 2; %}

for (int n = p; true ; n = n + 2) {
for (int i = 0; i < ps.size (); i++) {

int el = ((Integer) ps.get(i)).intValue();

if (n % el) == 0) break; // not a prime

if (el * el) > n) {
// n is a prime
ps. add(new Integer(n));
p=n+ 2;

return n;

}
} // end of function
} // end of inner class
} // end of class

February 16, 2004 Lecture 8 — Comp 303 : Programming Techniques Page 22

Iterators over Iterators

13
14
18
23
25
29
36
41
52
65
66
78
80
95
101

February 16, 2004 Lecture 8 — Comp 303 : Programming Techniques Page 23

Iterators over Iterators

e Iterators can be extended by combining them with other
iterators.

static Iterator filter (Iterator g, int x)
throws nullPointerException
// REQUIRES: g contains only Integers
// MODIFIES: g
// EFFECTS: if g is null throws nullPointerException
// else returns a generator that produces each
// element e of g for e/x =0

e Now it is easy to iterate the divisors of x using elements of an

IntSet that contains natural numbers.

February 16, 2004 Lecture 8 — Comp 303 : Programming Techniques Page 24

Functions are objects

e An iterator is a special case of a general principle: it can be
useful to treat an operation as an object that can be passed
around just like any other object.

static Iterator dynamicfilter (Iterator g, Check x)
throws nullPointerException
// REQUIRES: g contains only Integers
// MODIFIES: g
// EFFECTS: if g is null throws nullPointerException
// else returns a generator that produces each

// element e of g for which x.checker(e) is true

interface Check {public boolean checker (Integer 1i);}

e Now it is easy to iterate over primes numbers using elements of

an IntSet that contains natural numbers.

February 16, 2004 Lecture 8 — Comp 303 : Programming Techniques Page 25

Design issues

Most data types that store a collection of items will include

1terators.

Adequacy requires that elements can be accessed efficiently and

conveniently

Mutable collections require that the loop using a generator
does not change the collection

However, the standard Iterator interface allows a modification

operation: void remove()

February 16,

2004 Lecture 8 — Comp 303 : Programming Techniques Page 26

Optional operation remove()

e The method public void remove (); removes from the
underlying collection the last element returned by the iterator
(optional operation).

— This method can be called only once per call to next.

— The behavior of an iterator is unspecified if the underlying
collection is modified while the iteration is in progress in
any way other than by calling this method.

e This method can throw:

— UnsupportedOperationFException : if the remove operation is
not supported by this Iterator.

— lllegalStateException : if the next method has not yet been
called, or the remove method has already been called after
the last call to the next method.

February 16, 2004 Lecture 8 — Comp 303 : Programming Techniques Page 27

Useful modifications (this should be exceptional)

Iterator g = q.allTasks();

while (g.hasNext()) {

Task t = (Task) g.next ();

// perform t

// if t generates a new task nt

// enqueue it by performing q.enq(nt)
}

e The generator should be implemented so that it is aware of the

new task.

February 16, 2004 Lecture 8 — Comp 303 : Programming Techniques Page 28

Summary

e Adequacy of collection types requires a way to iterate
efficiently and conveniently over its elements.

e Iterators provide a that solution.

e A generator object returns elements from the collection one at
a time, usually without requiring extra storage or requiring

access to all elements.

e Iterators support abstraction by hiding how elements are
produced: the generator has access to private variables of the

collection but shields the user from this knowledge

e Iterators assume that the collection remains unchanged while

iterating, except through the optional remove() operation

February 16, 2004 Lecture 8 — Comp 303 : Programming Techniques Page 29

Something new for February

Topics of interest

Network / Socket programming

Game design (interface)

ODbfuscation

Threading

Reflection

Serialization

February 16,

2004

Lecture 8 — Comp 303 : Programming Techniques

Page 30

Tool of the day : Thinkfree Office

e The award-winning ThinkFree Office is an affordable suite of
word processing, spreadsheet, and presentation graphics

applications.

e It can open, edit, and save directly to the corresponding
Microsoft(R) Office file formats like .doc, .xlIs, and .ppt.

e Its unique, pure Java architecture enables it to run on

Windows, Linux or Macintosh operating systems.

e ThinkFree Office features integrated, Internet-based file sharing
and storage with end-to-end security

e More information on Thinkfree Office can be found at

http://www.thinkfree.com/

February 16, 2004 Lecture 8 — Comp 303 : Programming Techniques Page 31

