
Exceptions

Comp-303 : Programming Techniques

Lecture 7

Alexandre Denault
Computer Science
McGill University

Winter 2004

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 1

Announcements

• How was the GUI tutorial?

• Both midterm will be held in Leacock 26.

• Promise to update the website tonight or tomorrow.

– Add the Tutorial slides

– Update the course slides

– Add the T.A. email

– Put the grading scheme for the project

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 2

Last lecture . . .

• Data Abstraction allows us to seperate the external interface of
an object from its inner working.

• When successful, Data Abstraction allows us to modify the
implementation of an object without modifying the other
objects using it.

• Differences between mutable and immutable objects.

• Examples with IntSet and Poly.

• Some methods from object may need to be overrided:

– equals()

– similar()

– hashCode()

– clone()

– toString()

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 3

Public/Protected/Private (last lecture)

Java Interfaces, Classes Variables, Methods, Inner-
Classes

Public visible everywhere visible everywhere, inherited by
all subclasses

Protected - visible to any class in the package,
inherited by all subclasses in or
outside the package

blank visible only in current
package

visible to any class in the package,
inherited by all subclasses in the
package but not outside package

Private - not visible to any class, not inher-
ited by any class

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 4

Violating the REQUIRES clause

• What happens if the REQUIRES clause is not met ?

public static int gcd (int n, int d) {

// REQUIRES: n, d > 0

// EFFECTS: Returns the greatest common divisor of n and d

while (n != d)

if (n > d)

n = n - d;

else

d = d - n;

return n;

}

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 5

Solution #1: do nothing

• Partial implementation: ”it’s up to the user to call gcd
correctly”.

• What happens if the user does call gcd with d or n = 0 ? less
than 0 ?

• Partial procedures lead to programs that are not robust.

• A robust program continues to behave reasonably in the
presence of errors:

– At best: provide an approximation of error-free behavior.
a.k.a. Graceful degradation

– At worst: halt with a meaningful error message without
causing damage to permanent data.

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 6

Solution #2: return special result

• Return 0: 0 cannot be the result of a correctly called gcd, so
can be used as a special result.

• What happens if you return 0 as the result of gcd ?

– Now the caller must check for the special result. This is
inconvenient.

• Sometimes the whole range of return values is legal, so there is
no special result to return.

• For example, the get method in Vector returns the value of the
vector’s ith element (either null or Object).

– There are no value to convey that the index out of bounds.

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 7

Solution #3: use an exception

• Exceptions signifies that something unusual occurs.

• They are separated from normal control flow:

– A() calls B() calls C() calls D()

– D throws an exception

– A catches the exception

– All the remaining code in D,C and B is skipped

• The use of exceptions is supported by Java Exception types.

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 8

Specifications

• Procedure that can terminate exceptionally has a throws clause
in the header:

public static int fact (int n) throws NonPositiveException

• More than one exception can be thrown:
public static int search (int [] a, int x)

throws NullPointerException, NotFoundException

// EFFECTS: if a is null throws NullPointerException

// else if x is not in a throws NotFoundException

// else returns i such that a[i] == x

• Header lists exceptions that are part of specified behavior.

• The Effects clause lists the exceptions and the action in each
case.

• Termination of a function by throwing an exception is ok when
you have an error.

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 9

Exception types

• Exceptions are objects.

• As such, they exist in the object hierarchy:

Object

Throwable

Error

Exception

...

(new checked exceptions)

...

RuntimeException

...

(new unchecked exceptions)

...

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 10

Constructing Exception Types

• A simple exception, only type as information:
Exception e1 = new myException();

• An exception with some extra info:
Exception e2 = new myException(

"here is where and why this exception occurred");

• Or even passing an object:
Exception e3 = new myException(

"here is where and why this exception occurred",

someObjectWhichCausedTheException);

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 11

Defining Exceptions

• Usually, the following is enough:
public class myException extends Exception {}

• This is equivalent to:
public class myException extends Exception {

myException() { super();}

myException(String s) {super(s);}

}

• Exception be me much more elaborate:
public class myException extends Exception {

Object offensiveObject;

myException(String s; Object o)

{super(s);offensiveObject = o;}

Object getOffensiveObject() {return offensiveObject;}

}

• Java does not enforce ???Exception naming, but is good
practice.

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 12

Where to define exception types ?

• Some Exceptions occur in many packages
(ex: NotFoundException).

• It makes sense to avoid naming conflicts and define a separate
Exception package.

• However, if special Exceptions are thrown by your package, you
can define them in your package.

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 13

Throwing Exceptions

public static int fact (int n) throws NonPositiveException {

...

if (n <= 0) throw

new NonPositiveException(

"Num.Fact: Used a negative number for n");

...

}

• What to put in the string ?

• Something that conveys information about what went wrong:
minimally the class and method that threw the Exception.

• Note that many methods may throw the same exception.

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 14

Catching Exceptions

try { x = Num.fact(y); }

catch (NonPositiveException e) {

// in here, use e

System.out.println(e);

}

• This code handles the exception explicitly.

• If a NonPositiveException is thrown anywhere within the try
block, execution proceeds at the start of the catch block, after
the thrown exception is assigned to e.

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 15

Variations on catching

• Multiple catch clauses can be used to handle different type of
exceptions.

try { x.foobar() }

catch (OneException e) { ... }

catch (AnotherException e) { ... }

catch (YetAnotherException e) { ... }

• You can also use nested try clauses.

• Here, the inner try block throws anotherException, It is
handled by the outer catch clause.

try { ...

try { ... throw new anotherException(); ...}

catch (SomeException e) { .. throw new anotherException(); ...}

... }

catch (anotherException e) { ... }

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 16

Exceptions & subtypes

try { ...

throw new oneException();

...

throw new anotherException();

...

} catch (Exception e) { ... }

• This catch clause will catch all exceptions occurring within the
try block.

• Pretty weird control flow are possible, especially when using
the Finally clause.

• Don’t abuse exceptions for fancy control flow:
catch clauses are usually implemented inefficiently because they
are exceptional

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 17

Catching Exceptions: try syntax

try {

statements

} catch (exception_type1 identifier1) {

statements

} catch (exception_type2 identifier2) {

statements

} finally {

statements

}

• First, the code within try block is executed.

• If an exception is thrown, the execution of the statements in
try block is stopped.

• The catch statements will be executed if the exception type
matches.

• Statements in the finally block is always executed, even if the
exception is not caught.

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 18

Exception types

• Checked exceptions (extends exception)

– must be listed in the throws clause of the called procedure
that throws the exception.

– must be handled by the caller code either by
∗ propagation
∗ catching

– otherwise, we get a compile-time error.

– Example: IOException

• Unchecked exceptions (extends RuntimeException)

– don’t have to be listed

– don’t have to be handled

– Example: NullPointerException,
IndexOutofBoundsException

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 19

Handling Exceptions Implicitly

• If the caller calls a procedure without a try clause then the
thrown exception is propagated to the caller of the caller.
(A calls B calls C calls D throws e, A catches e)

• To propagate, the caller must list the thrown exception
(checked by compiler).

• Unchecked exceptions are automatically propagated until they
reach an appropriate catch clause
(not checked by compiler)

• But you can still list them in the header and it is good practice
to do so
(so the user is aware of the unchecked exception and can catch
it if desired)

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 20

Programming with exceptions

• How to handle thrown exceptions ?

• Possibilities:

– handle specifically: separate catch clauses deal with each
situation in a different way

– handle generically: one catch clause for supertype exception
takes generic action like println and halt or restart program
from earlier state

– reflect the exception: the caller also terminates by throwing
an exception by propagation or by throwing a different
exception (usually better)

– mask the exception: the caller handles the situation and
continues with normal flow

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 21

Reflection

public static min (int [] a)

throws NullPointerException, EmptyException {

// EFFECTS: if a is null throws NullPointerException else

// if a is empty throws EmptyException

// else returns minimum value of a

int m;

try {

m = a[0];

} catch (IndexOutOfBoundsException e) {

throw new EmptyException(Arrays.min);

}

for (int i = 1; i < a.length; i++)

if (a[i] < m) m = a[i];

return m;

}

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 22

Masking

public static boolean sorted (int [] a)

throws NullPointerException {

// EFFECTS: if a is null throws NullPointerException else

// if a is sorted in ascending order returns true else

// returns false

int prev;

try { prev = a[0]; }

catch (IndexOutOfBoundsException e) {

return true; }

for (int i = 1; i < a.length; i++)

if (prev <= a[i])

prev = a[i];

else

return false;

return true;

}

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 23

Design issues

• When to use exceptions ?

– To replace REQUIRES: clauses and make a procedure total
instead of partial.

– To avoid encoding information in ordinary results.

– To signal special, usual erroneous situations in non-local use
of procedures.

• When not to use exceptions ?

– When the context of use is local

– When the REQUIRES: clause would be too expensive or
impossible to check

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 24

Exceptions are exceptional

• Exceptions should not be thrown as a result of normal use of a
program.

– Catching exceptions is not efficient.

– You should be able to ignore exceptions when you read the
code to understand regular behavior.

– There are other ways to discontinue execution in
non-exceptional cases:

– break: terminates switch, for, while, do
– continue: skips to end of loop body
– return: terminates method

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 25

Checked versus Unchecked

• Advantages of checked exceptions:

– Provide protection:
– compiler warns about exception that are not caught
– forces the programmer to catch them / deal with them

– Prevents wrongly captured exceptions

• Disadvantages of checked exceptions:

– Forces the user to deal with them even if he is 100% sure
that they cannot occur.

• Use unchecked exceptions if you expect they will not occur
because they can be conveniently and inexpensively avoided.

• Otherwise, use checked exceptions.

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 26

Defensive programming

• Defensive programming is checking for errors that are not
supposed to occur (introduced by other procedures, hardware,
user). These situations are not described by in the procedure
specifications.

• Exceptions are good for this, because they provide a means of
conveying information about errors and handle errors without
cluttering the main flow.

• Typically, you could use one generic unchecked exception. e.g.
FailureException

• In the following code fragment, the user is sure that
NotFoundException cannot occur. However, it is a checked
exception, so it must be caught:
try {Search(a,x); }

catch (NotFoundException e) {

throw new FailureException(

"thisClass.thisProcedure" + e.toString()); }

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 27

Summary

• Exceptions are thrown under exceptional conditions. The
should not be used for regular control flow.

• Exceptions move conditions from REQUIRES clause to
EFFECTS clause.

• Checked exceptions are declared in method header and must be
caught or propagated by caller.

• Unchecked exceptions do not have to be declared and are
propagated automatically.

• A caught exception can be reflected or masked.

• When using Defensive Programming, all sources of errors must
be checked, even the unlikely and the impossible.

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 28

Tool of the day: Nokia 5100

• The Nokia 5100 is a Java-enabled cell-phone.

• It uses the Java MIDP (Mobile Information Device Profile)
virtual machine.

• Developers can use the J2ME Wireless Toolkit to create
application that will work on this cell phone.

• Developing for specialized hardware (such as a cellphone) is
very different from developing for a personal computer.

February 16, 2004 Lecture 7 – Comp 303 : Programming Techniques Page 29

