Objects, Types and Variables

Comp-303 : Programming Techniques

Lecture 3

Alexandre Denault

Computer Science
McGill University
Winter 2004

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 1

Announcements

The T.A.’s office hours will be posted on the web.
— Monday - Wednesday: 12:00 - 13:30
— McConnell 234 (Compilers Lab)

Lectures from 1 to 8 have been posted on the web. However,

lectures I have not yet given are subject to change.

The tutorial on Java GUI will be given Thursday, January 22th
at 18:15. The room will be announced shortly.

February 16,

2004 Lecture 3 — Comp 303 : Programming Techniques Page 2

Last lecture . ..

e O.0. Programming allows programmers to shift responsibility.

e Java has a rich set of abstraction building blocks:
— Abstract classes (concrete)
— Interfaces
— Overloading
— Overriding

e Design patterns are built from basic constructs.

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 3

Program structure

Java programs consist of classes and interfaces.

e (Classes
— Define collections of procedures

— Define new data types

e Interfaces

— Define new data types / parts of data types

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 4

Objects & Variables

e All data is accessed by means of variables.
e Local variables (of methods) reside on run-time stack.

e Fach variable has a type declaration.

— Primitive types: values

3 false c

— All other types: objects

— References to object on heap.

— Predefined types in package java.lang (implicit import

java.lang).

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 5

Objects & Variables (cont.)

e Primitive Variable

int 1 = 6;

e Uninitialized Primitive Variable

int j;

e Array of 5 primitives

int [] a = {1,3,5,739};

e Empty Array of 3 primitives

int [] b = new int[3];

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 6

Objects & Variables (cont.)

e Reference to String Object

String t; or String t = null;

e String object

String s = new String("abcde");

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 7

Assignment (The = symbol)

e Every object has an identity that is distinct from any other
object.

e Assignment: copies values (primitive) or references.

j =1; // copy value
b = a; // copy reference

t = s; // copy reference

e Reference assignment makes variables share objects.

e The symbol == checks if two variables contain the same value
(or reference).

e If objects become unreachable, storage will be reclaimed by the
garbage collector.

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 8

Mutability

e The state of a mutable object can change.

— Example: Arrays are mutable
a: {1,3,5,7,9}
al2] = 9;

a: {1,9,5,7,9}

e The state of immutable objects never changes.

— Example: Strings are immutable

t: String object of value "abcde"

t =t + ’f’

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 9

Mutability

t: New string object of value "abcdef"

— In other words, a new string object is created and

referenced by t.

— The old string object is discarded and will eventually be
garbage collected.

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 10

Method Call Semantics

e Let us take the example:

myBook.readChapter(x, y, ...);

e First, we evaluate myBook for the class of the object whose
method is being called (using dispatch).

e Then, we evaluate the expressions x,y,. .. for actual parameter
values.

e Then, we create an activation record on the run time stack
containing:
— formal parameters
— local variables

e Then, we transfer control to first statement of target method.

o If myBook is null, we get a NullPointerException.

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 11

Type Checking

e Java is Strongly Typed

— The compiler checks that every assignment and every

method call is type correct.
— Variable declarations give type of variables.
— Method headers define signatures: the set of argument and
result types.
e Java is type-safe

— Declarations and headers allow the compiler to determine

the apparent type of any expression.

— All array accesses are checked to be within bounds.

e Type mismatches cannot occur at run time (unlike C,C++

with union types & explicit deallocation).

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 12

Type Substitutability

e If S is a subtype (subclass) of T, then objects of type S are
usable anywhere where T is usable.

— S has all methods that T has (enforced by compiler).
— The methods in S must behave the same way as the
methods in T (un-enforceable).
o All types are subtypes of Object and understand:
— boolean equals (Object o)
— String toString ()
e The actual type of an object (defined by creation) is

guaranteed to be a subtype of the apparent type of the variable
to which the object is assigned.

Object ol = "abc"; // String

Object 02 = {1,2,3}; // Array

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 13

Type Substitutability

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 14

Type Checking

e Compiler always works with apparent types:

Object ol = "abc"; // actual type String

Object 02 {1,2,3}; // Array

e Therefore:

if (ol.equals("abc")) // legal
if (02.equals("abc")) // legal
if (ol.length()) // illegal

String s = ol; // illegal

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 15

Type Checking

e You can get around this by type-casting:

if ((String) ol.length()) // legal

String s = (String) ol; // legal

e Is safe because type-check occurs at run time (not like C).

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 16

Type Conversion

e Type casting changes the apparent type of an expression, but
does not compute or modify values.

e Type conversion changes a type into another type and typically
computes the new value.

e Java defines implicit conversions on primitive types:

— Chars are widened to numeric types:

char ¢ = ’a’;

int n = c;

float f = n;

— int is widened to long

— long is widened to float

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 17

Overloading & conversion

e Method overloading : method with same name but different
signature.

static int comp (int, long) // definition 1

static int comp (long, int) // definition 2

static int comp (long, long) // definition 3

e Consider the following declarations:

int x;

long y;

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 18

Overloading & conversion

e The actual method called is the most-specific:
— comp (X,y) : definition 1
— comp (y,y) : definition 3
— comp (x,x) : compile-time error because neither definition 1

or 2 is most-specific

e All these rules apply to objects and subtypes.

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 19

Method dispatch

e Consider this piece of code:

String t = "ab";
Object o = t + "c"; // concatenation
String r = "abc";

boolean b = o.equals(r);

e We want to find out whether b has the value abc.

e String defines equals(object o) to compare character per
character.

e However, the standard definition of equals(object o) in Object
compares object identity (==).

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 20

Method dispatch

e Fortunately, dispatch is based on actual type (of the receiver

object), not on apparent type.

e We get the correct result.

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 21

Packages

Classes and Interfaces are grouped in Packages.

e 'To Declare:

package myPackage;

public class myClassO1 {...

e 1o use:

. myPackage.myClassO1. ..

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 22

Packages

import myPackage.*;

...myClassO1...

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 23

Packages

Provide encapsulation

— only public classes, interfaces, methods & fields are visible
outside the package

— all other declarations are only visible within the package

Provide naming scope

— prevents naming conflicts between classes and interfaces

defined in different packages

Permits naming hierarchy

import ourProject.numericalCode.myPackage.*
import ourProject.numericalCode.*

import ourProject.x*

February 16,

2004 Lecture 3 — Comp 303 : Programming Techniques

Page 24

Packages

Each project team member is responsible for a package.

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 25

Java-specific type: Vector

e Vector is a cross between a list (extensible) and an array

(index). It’s defined in java.util
— Elements are of type Object.

— If you put something in a Vector and take it out later, the

apparent type has widened to Object.
— Vector grows by adding to high end:

Vector v = new Vector(); // creates empty Vector
if (v.size() == 0) // true

v.add("abc"); // increases size by 1 and stores argument

— To access an element, a cast is necessary:

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 26

Java-specific type: Vector

String s = (String) v.get(0);

— Other operations on vectors:

v.remove(0); // removes 1st element (shifts remainder)

v.set(0,"abcd"); // changes existing element

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 27

Stream input/output

e Package java.io provides standard Input and Output (io).

e Input

// read an integer
BufferedReader in =

new BufferedReader (new InputStreamReader (System.in);
String s = in.readLine();

int i = Integer.parselnt(s);

e Output

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 28

Stream input/output

// write an integer

System.out.println(i);

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 29

Applications

e A java application starts with the main method of a specified
class:

java myClass al a2 ...

e (Class with a main method:

public class myClass {
public static void main(String [] args) {

// args[0] == al

// args[1l] == a2

// start of program

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 30

Applications

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 31

Summary

Values and objects

Objects can be shared and mutable

Java is strongly typed and type-safe

Java provides automatic storage management

All objects are subtypes of Object and understand toString()
equals()

Primitive types are converted to other types

All types can be cast to other types (no computation)
Packages provide encapsulation and naming scope
java.util provides Vector

java.io provides standard input/output

Executions starts at main() method

February 16,

2004 Lecture 3 — Comp 303 : Programming Techniques

Page 32

Tool of the day: CVS

e CVS is the Concurrent Versions System, an open-source

version control system.

— A version control system allows multiple programmers to

work on a project at the same time.
— It tracks changes and builds a history of those changes.
— It allows you to merge modification done on files.

— Works with SSH, so you don’t need a dedicated server to
use it. You can even use it on your CS account.

— More information on CVS is available at:

http://www.cvshome.org/

e Other version control system exist.

— Visual SourceSafe, the Microsoft solution, offers tight
locking controls.

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 33

Tool of the day: CVS

— Subversion, the replacement for CVS, is slowly gaining
popularity.

February 16, 2004 Lecture 3 — Comp 303 : Programming Techniques Page 34

