
Chain of Responsibility

Comp-303 : Programming Techniques

Lecture 21

Alexandre Denault
Computer Science
McGill University

Winter 2004

April 1, 2004 Lecture 21 – Comp 303 : Chain of Responsibility Page 1

Last lecture . . .

• Flyweights allows us to deal with situation where a large
number of objects could be required.

• There is still a lot of work to do on the project and not a lot of
time to do it.

April 1, 2004 Lecture 21 – Comp 303 : Chain of Responsibility Page 2

Typical Situation

• Today, our example starts with a help system.

• When a user presses F1 on his keyboard, he brings up a help
screen for the object currently in focus.

• Consider the screen on the following screen on the next slides :
Given that not every object has a help screen, which help screen
should be shown?

April 1, 2004 Lecture 21 – Comp 303 : Chain of Responsibility Page 3

Typical Save As Dialog Box

Save As ... X_

Directory_1

Directory_2

Directory_3

File_1

File_2

filename

filetype

OK

Cancel

April 1, 2004 Lecture 21 – Comp 303 : Chain of Responsibility Page 4

Flyweight

• Pattern Name : Chain of Responsibility

• Classification : Behavioral

• Intent : Avoid coupling the sender of a request to its receiver
by giving more that one object the chance to handle the
request. Chain the receiving objects and pass the request along
the chain until an object handles it.

April 1, 2004 Lecture 21 – Comp 303 : Chain of Responsibility Page 5

Motivation

• When an object doesn’t have a help screen associated to it, we
would like to see the help request forwarded to a lower level.

• For example, if the OK button doesn’t have a help screen, then
the request should be forwarded to the dialog box.

• If the dialog box doesn’t have a help screen, then the request
should be forwarded to the main screen.

• If the main screen doesn’t have a help screen, then the request
should be forwarded to the application.

• And so on . . .

April 1, 2004 Lecture 21 – Comp 303 : Chain of Responsibility Page 6

Motivation (cont.)

• The main idea is that when F1 is pressed, the application
doesn’t know what item will answer the request.

• An item in the application knows one of two things:

– How it should answer a request for help. OR

– Who should it pass along the request for help.

• The items don’t need to know anything about requests it can’t
handle. It only needs to know how to pass them along.

April 1, 2004 Lecture 21 – Comp 303 : Chain of Responsibility Page 7

Motivation (cont.)

Keyboard
Event (F1)

OK
Button

Dialog
Box

Main
Screen

Application

Help()

Help()

Help()

Help()

April 1, 2004 Lecture 21 – Comp 303 : Chain of Responsibility Page 8

Applicability

Use Chain of Responsibility when . . .

• . . . more than one object may handle a request, and the handler
isn’t known ahead of time.

• . . . you want to issue a request to one of several objects without
specifying the receiver explicitly.

• . . . the set of objects that can handle a request should be
specified dynamically.

April 1, 2004 Lecture 21 – Comp 303 : Chain of Responsibility Page 9

Structure

Handler

 successor: Handler

 HandleRequest()

ConcreteHandler2

 successor: Handler

 HandleRequest()

ConcreteHandler1

 successor: Handler

 HandleRequest()

Client

April 1, 2004 Lecture 21 – Comp 303 : Chain of Responsibility Page 10

Participants

• Handler : defines an interface for handling requests and
sometimes implements the successor link

• ConcreteHandler : handles the request or forwards it to the
successor

• Client : initiates the request to one of the ConcreteHandler in
the chain

April 1, 2004 Lecture 21 – Comp 303 : Chain of Responsibility Page 11

Collaborations

• The client issues the request to the ConcreteHandler.

• The request is then propagated along the chain until a
ConcreteHandler takes responsibility.

April 1, 2004 Lecture 21 – Comp 303 : Chain of Responsibility Page 12

Consequences

• Reduce coupling : The pattern frees the receiving object of
knowing who should handle the request. Objects in the chain
don’t need to know the structure of the chain.

• Added flexibility: You can add or change responsibilities for
handling a request by changing the chain at run time.

• Reception is not guaranteed: Nothing in the pattern guarantees
that the request will be handled. A request can fall of the
chain if the chain is not properly configured.

April 1, 2004 Lecture 21 – Comp 303 : Chain of Responsibility Page 13

Implementation

• The are two ways to implement the successor chain:

– Use existing links : some structures (such has trees)
already have the necessary links to implement this pattern.

– Create new links : if the handlers have no links (or the
existing ones are unsuitable), you will need to implement
your own links.

• Which brings us to the next point: the chain doesn’t have to
be linear, it can have the shape of a tree.

• Finally, you can make the handler more flexible by representing
the request as on object and passing it along as a parameter.

April 1, 2004 Lecture 21 – Comp 303 : Chain of Responsibility Page 14

Does this look familiar?

public abstract class Server {

public void receive(Message msg) {

switch(msg->getType()) {

case PlayerMove:

//do something

case GraphicUpdate:

//do something

case ChatMessage:

//do something

case GameMessage:

//do something

default:

//We’ve got trouble

}

}

}

April 1, 2004 Lecture 21 – Comp 303 : Chain of Responsibility Page 15

Sample Code

public abstract class Handler {

private Handler successor = null;

public abstract boolean receive(Message msg);

// Returns true if message is handled.

public void setSuccessor(Handler su) {

this.successor = su;

}

public boolean nextSuccessor(Message msg){

if (this.successor == null) return false;

return this.successor.receive(msg);

}

}

April 1, 2004 Lecture 21 – Comp 303 : Chain of Responsibility Page 16

Building our handlers

public class GraphicHandler extends Handler {

public boolean receive(Message msg) {

if (msg is related to graphics) {

// handle request

return true;

} else {

return nextSuccessor(msg);

}

}

}

April 1, 2004 Lecture 21 – Comp 303 : Chain of Responsibility Page 17

Using our handlers

public class Server {

Handler graphicMsgHandler;

Handler playerMsgHandler;

Handler chatMsgHandler;

Handler gameMsgHandler;

public Server() {

graphicMsgHandler = new GraphicHandler();

playerMsgHandler = new PlayerHandler();

chatMsgHandler = new ChatHandler();

gameMsgHandler = new GameHandler();

graphicMsgHandler.setSuccessor(playerMsgHandler);

playerMsgHandler.setSuccessor(chatMsgHandler);

chatMsgHandler.setSuccessor(gameMsgHandler);

}

April 1, 2004 Lecture 21 – Comp 303 : Chain of Responsibility Page 18

Using our handlers

public void receive(Message msg) {

boolean msgHandle = graphicMsgHandler(msg);

if (msgHandle == false} {

//We’ve got trouble

}

}

}

April 1, 2004 Lecture 21 – Comp 303 : Chain of Responsibility Page 19

Notes

• This has a lot more overhead than using switch statements.

• However, this is dynamic and modular. The server doesn’t
need to know anything about message types.

• Message types that are received most often should be at the
front of the chain.

• As mentioned previously, the chain can be dynamic.

April 1, 2004 Lecture 21 – Comp 303 : Chain of Responsibility Page 20

Dynamic Chain

public disableChat() {

playerMsgHandler.setSuccessor(gameMsgHandler);

}

public enableChat() {

playerMsgHandler.setSuccessor(chatMsgHandler);

}

April 1, 2004 Lecture 21 – Comp 303 : Chain of Responsibility Page 21

Known Uses

• Event Handlers in Guis

April 1, 2004 Lecture 21 – Comp 303 : Chain of Responsibility Page 22

Related Patterns

• Composite

April 1, 2004 Lecture 21 – Comp 303 : Chain of Responsibility Page 23

Summary

• Chain of Responsibility is a useful pattern when you want to
decouple sender and receiver.

• It allows you to use objects to handle events dynamically (i.e.
dynamic switch statements).

April 1, 2004 Lecture 21 – Comp 303 : Chain of Responsibility Page 24

Tool of the day: JProfiler

• A profiler is a computer program that can track the
performance of another program, thereby finding bottle necks.

• If your having performance problems with your project, a
profiler can help you pinpoint the problem spots.

• JProfiler is an example of such a tool. It is very easy to use.
Unfortunately it’s commercial.

• There are many other Java profiler out there (JMP, Extensible
Java Profiler (EJP), YourKit Java Profiler, etc).

• IBM’s and Sun’s JVM even have a built-in Java profiler (but
it’s kinda unreliable and hard to use).
java -Xrunhprof:cpu=times className

java -Xrunhprof:heap=sites className

April 1, 2004 Lecture 21 – Comp 303 : Chain of Responsibility Page 25

References

• These slides are inspired (i.e. copied) from these three books.

– Design Patterns, Elements of Reusable Object-Oriented
Software; Erich Gamma, Richard Helm, Ralph Johnson and
John Vlissides; Addison Wesley; 1995

– Java Design Patterns, a Tutorial; James W. Cooper
Addison Wesly; 2000

– Design Patterns Explained, A new Perspective on Object
Oriented Design; Alan Shalloway, James R. Trott; Addison
Wesley; 2002

April 1, 2004 Lecture 21 – Comp 303 : Chain of Responsibility Page 26

