
Testing and Debugging

Comp-303 : Programming Techniques

Lecture 14

Alexandre Denault
Computer Science
McGill University

Winter 2004

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 1

Announcements . . .

• I hope everybody enjoyed their week of rest.

• Assignment 2 is due today.

• Don’t forget to drop a paper copy in the hand in box.

• Most of the midterm correction is done and I will be giving
them back on Thursday.

• Last day for project interview is tomorrow.

• CSGames still needs volunteers. If you want to help out this
week-end, send an email to helpus@csgames.org .

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 2

Testing terminology

• Validation : a process designed to increase our confidence that
a program works as advertised

• Verification : a formal or informal argument that a program
works on all possible inputs

• Testing : a process of running a program on a limited set of
inputs and comparing the actual results with expected results

• Debugging : a process designed to determine why a program is
not working correctly

• Defensive programming : the practice of writing a program in a
way designed specifically to ease validation and debugging

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 3

Designing test cases

• Exhaustive testing is usually impossible

– A program with three inputs ranging from 1 to 1000 would
take 1’000’000’000 test cases.

– With a speed of 1 test per second, it would take 31 years.

• How to define a limited set of good test cases ?

– Black-box testing : testing from specification without
regarding implementation or internal structure.

– Glass-box testing : augments black-box testing by looking at
implementation.

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 4

Black-box testing

• Advantages:

– not influenced by assumptions about implementation details

– robust with respect to changes in implementation

– allows observers with no internal knowledge of the program
to interpret the results of the test

• Disadvantages:

– unlikely to test all parts of a program

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 5

Testing by looking at the Specs (1)

static boolean isPrime (int x)

// EFFECTS: if x is prime returns true else returns false

• The effects clause has two cases.

• Both need to be tested.

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 6

Testing by looking at the Specs (2)

static int search (int [] a, int x)

throws NullPointerException, NotFoundException

// EFFECTS: if a is null throws NullPointerException

// else if x is in a returns i such that a[i] = x

// else throws NotFoundException

• We should test all 3 cases mentioned in effects clause.

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 7

Testing by looking at the Specs (3)

static float sqrt (float x, float epsilon)

// REQUIRES: x >= 0 && 0.00001 < epsilon < 0.001

// EFFECTS: returns sq such that x - epsilon <= sq*sq <= x + epsilon

• The requires clause consists of two cases:
x = 0 && 0.00001 < epsilon < 0.001

x > 0 && 0.00001 < epsilon < 0.001

• Both need to be tested.

• The effects clause can be satisfied in many ways:

– We get an exact result

– We get a larger result

– We get a smaller result

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 8

Testing beyond the Specs

static void appendVector (Vector v1, Vector v2)

throws NullPointerException

// MODIFIES: v1 and v3

// EFFECTS: If v1 or v2 is null throws NullPointerException

// else removes all elements from v2 and appends them in

// reverse order to v1

• In certain situations, you should test beyond the specification.

• For example, if I were to call the appendVector function with
v1 == v2, I could get a serious looping error.

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 9

Testing boundary conditions

• A program should test typical input values:

– Arrays or sets are not empty.

– Integers are between smallest and largest values.

• Boundary conditions usually reveal:

– Logical errors where the path to a special case is absent.

– Conditions which cause the underlying hardware or system
to raise an exception (e.g. arithmetic overflow).

• Test data should cover all combinations of largest and smallest
values:

– Epsilon close to 0.001 and 0.00001

– Arrays of 0 and 1 element

– Empty strings and strings of one character

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 10

Black-box test summary

• Black-box tests are based on a program’s specification, not on
its implementation.

• Black-box tests remain valid if program is reimplemented.

• Black-box tests should

– Test all paths through a specification

– Test boundary conditions and combinations of boundary
conditions

– Sometimes, even test a little beyond the specification

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 11

Glass-box testing

• Glass-box tests complement Black-box testing by adding a test
for each possible path through the program’s implementation.

– A glass-box test set should be path-complete.

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 12

Example of path-completeness

static int maxOfThree (int x, int y, int z) {

if (x > y)

if (x > z) return x;

else return z;

if (y > z) return y; else return z;

}

• There are four possible paths through this function.

• This means we need four test cases:

– 3,2,1

– 3,2,4

– 1,2,1

– 1,2,3

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 13

Beyond Path-Completeness

static int maxOfThree (int x, int y, int z) {

return x;

}

• However, path-completeness is not sufficient.

• Here, I only have one path. This means I would only need one
test (ex: 1,2,3).

• This shows that specification should be tested, not just the
implementation.

• Glass-Box testing does not reveal missing paths.

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 14

Feasibility of Path-Completeness

• Sometimes, it’s not feasible to test every path.

for (int i = 1; i <= 100; i ++)

for (int j = 1; j <= 100; j ++)

if (Test.predicate(i*j)) ...

• In this example, we have
1’267’650’600’228’229’401’496’703’205’376 paths.

• Instead, we should test a subset.

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 15

Approximating path-completeness

• Always test each branch of a conditional.

• Loops with fixed amount of iteration.
test 2

• Loops with variable amount of iteration.
test 0,1,2

• For recursive procedures,

– test the immediate return.

– test one recursive call.

• Don’t forget to raise all possible exceptions.

• Use the Engineer’s induction:

One, two, three, that’s good enough for me.

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 16

Testing procedures: palindrome

static boolean palindrome (String s)

throws NullPointerException {

// EFFECTS: If s is null throws NullPointerException else

// returns true if s reads the same forward and backward

// e.g. "deed" and " " are both palindromes

int low = 0;

int high = s.length -1;

while (high > low) {

if (s.charAt(low) != s.charAt(high))

return false;

low ++;

high --;

}

return true;

}

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 17

Testing palindrome

• Black-box testing of specification:

– s = null

– s = ””

– s = ”a”

– s = ”deed”

– s = ”seed”

• Glass-box testing of implementation

– NullPointerException

– not executing loop

– return false in first iteration

– return true after first iteration

– return false after second iteration
– add case s = ”asia”

– return true after the second iteration

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 18

Testing palindrome

• Missed any cases ?

– What if s has odd size greater than one 1?

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 19

Testing polymorphic abstractions

• This is similar to testing non-polymorphic data abstractions,
but one type per parameter is not enough.

• If an interface is used, extra tests for incompatibility should be
added.

– e.g. To test OrderedList, add a String and then add an
incomparable type (Integer?)

• In the related subtype approach, testing one subtype of the
interface is not enough.

– e.g. Insert a String in a SumSet that uses a PolyAdder.

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 20

Testing type hierarchies

• Blackbox testing for a subtype must include the blackbox tests
of the supertype.

• However, no Glassbox testing of the supertype is required.

• When testing a subtype, you should . . .

– Test weakened preconditions.
Cases supported by subtype but not supertype.

– Test strengthened postconditions.
For example, test whether elements() of SortedIntSet are
sorted.

– Test additional methods defined for subtypes.

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 21

Unit testing and Integration testing

• Unit testing: to test whether a program unit implements its
specification
(i.e. specification is considered correct)

• Integration testing: to test the combination of two or more
units
(i.e. specification may be incompatible)

• Unit testing should always precede integration testing (divide
and rule).

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 22

Tools for testing

• We might need to piece of code for unit testing:

– Test drivers: used to test a module when using code is still
unimplemented
(executes tests + compares results with expected results)

– Stubs: used to test a module when the code used by the
module is still unimplemented
(checks arguments and environment + produces expected
results)

• Regression testing: repeat all previous tests after a change is
made to fix a failed test

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 23

Debugging

• Testing is used to detect errors.

• Debugging is used to understand and fix errors.

• Some common sense issues:

– debugging takes more time than programming

– small modules reduce debugging effort

– well-written specifications reduce debugging effort

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 24

Scientific Method

• When debugging, apply the scientific method:

1. Study the available data.

2. Formulate a hypothesis that is consistent with the data.

3. Design and run a repeatable experiment that can refute the
hypothesis.

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 25

Debugging strategies

• Find the simplest input that causes the error to occur.
e.g. for palindrome():

"able was I ere I saw Elba" returns false

=> hypothesis 1: the procedure doesnt work for odd-size palindromes

"ere" returns true

=> hypothesis 2: the procedure doesnt work with blanks

" " returns true

=> hypothesis 3: the procedure doesnt work with mixed upper

and lower case characters

"Abba" returns false => bingo !

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 26

Debugging strategies

• Trace the code by checking intermediate results.
(System.out.println(o.toString())

• An even better idea is to use an Interactive Development
Environment (IDE) that allows you to inspect variables easily.

• This allows you to find the procedure where the bug occurs
(which is often most of the work).

• The bug is probably not where you think it is.

• Ask yourself where the bug is not.
Sherlock Holmes: ”If you eliminate the impossible, what
remains, however improbable, is the truth”

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 27

Debugging strategies

Try the simple things first:

• reversing the order of input arguments

• looping through an array (or String or Vector) one index too far

• failing to re-initialize a variable a second time

• copying only the top level of a data structure (shallow copy -
aliasing errors)

• failing to parenthesize an expression correctly

• failing to use = instead of ==

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 28

Debugging strategies

• Get someone else to help you
In debugging you often follow the same reasoning as when you
wrote the code.

• Explain the problem to someone else
Articulating your reasoning often reveals the source.

• If all else fails, go away
Debugging when overly tired makes you repeat the same
mistakes: take a break.

• When you find a bug, think why you put it there
This often leads you to discover new bugs.

• Don’t be in a rush to fix the bug
Think through all the ramifications: it is better to fix a bug
you understand completely than to repeatedly apply small fixes
until it works.

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 29

Defensive programming

• In development, check often:

– requirements (e.g. check if sorted before binary search)

– conditionals (e.g. tests all cases, even those that ”can not”
occur)

• In production code, disable the checks that are too inefficient
by putting them in comments (so they can be reactivated
easily).

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 30

Summary

• Testing is a way of validating correctness of your code.

• Black-box testing is generated from the specification. It always
remains, even when implementation changes.

– check boundary conditions

– check each path through the specifications

• Glass-box testing complements BB-testing by testing each path
in your code.

– all branches in a conditional

– 0,1,2 iterations

– 0 and 1 recursive call

• Debugging allows you to find and correct errors using the
scientific method.
(analyze data, formulate hypothesis, try to disprove)

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 31

Tool of the day: JUnit

• JUnit is a regression testing framework written by Erich
Gamma and Kent Beck.

• It is used by the developer who implements unit tests in Java.

• You can create unit tests by subclassing TestCase.

• JUnit allows you to automate the testing of all your test cases.

• More info on JUnit is available at
http://www.junit.org/

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 32

Tool of the day: Jdb

• Jdb is one of the best kept secret of Java.

• It is a demonstration of the Java Platform Debugger
Architecture that provides inspection and debugging of a local
or remote Java Virtual Machine.

• It works like gdb, but a little more complicated.

• Unlike gdb, it has extensive support for tracking threads.

• To use jdb, you need to compile your classes with Debug
information (-g).

• You can/should find a tutorial on the web.

March 1, 2004 Lecture 14 – Comp 303 : Testing and Debugging Page 33

