
Socket and Serialization

Comp-303 : Programming Techniques

Lecture 12

Alexandre Denault
Computer Science
McGill University

Winter 2004

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 1



Announcements

• Midterm is in one week.

• I’ll try to post some information on the midterm this weekend.

• Don’t forget that the midterm is in Leacock 26.

• The last class for midterm material is today.

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 2



Last lecture . . .

• Java provides many tools to implement threading behavior.

• When implementing threads, you have the choice between
extending Thread and implementing Interface.

• Methods such as yield(), sleep(), wait(), notify() and
notifyAll() allow you to control the behavior of your threads.

• We have barely scratched the surface: timers, thread groups,
priorities, etc.

• There are many more issues you have to deal with when
programming concurrent behavior: race condition, atomicity,
sharing, etc.

• If you’re interested in learning more about concurrency, check
out Comp-409.

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 3



References and additional material

• This course is heavily inspired from the Sun’s Socket Tutorial
and Sun’s IO Tutorial (i.e. a lot of material was taken directly
from the tutorial):

http://java.sun.com/docs/books/tutorial/networking/sockets/

http://java.sun.com/docs/books/tutorial/essential/io/serialization.html

• A good (but advanced and expensive) book on sockets would
be:

Unix Network Programming

W. Richard Stevens

Prentice Hall PTR

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 4



Network Sockets

• To understand Java sockets, we must first understand TCP/IP
sockets.

• Every unique machine has a unique address called an IP
address. (ex: 132.206.51.234 is the CS mail server)

• IP address are hard to remember, so we also have the domain
name system (ex: mail.cs.mcgill.ca)

• Every machine has a fixed number of ports (65536).

• Ports allows us to recognize IP data from different applications.

• The port range is divided as follows

– 0-1023: The Well Known Ports

– 1024-49151: The Registered Ports

– 49152-65535: The Dynamic and/or Private Ports

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 5



Client requests connection

Server

Client

Listening Port

80

1030

To make a connection request, the client tries to rendezvous with
the server on the server’s machine and port.

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 6



Server accepts connection

Server

Client

Listening Port

80

1030

Upon acceptance, the server gets a new socket.

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 7



Another client requests connection

Server

Client 1

Listening Port

80

1030

Client 2

4283

It needs a new socket so that it can continue to listen to the
original socket for connection requests while tending to the needs of
the connected client.

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 8



Server accepts connection

Server

Client 1

Listening Port

80

1030

Client 2

4283

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 9



Important listening ports

• 20/21 : File transfer protocol (FTP)

• 22 : Secure Shell (SSH)

• 23 : Telnet

• 25 : Simple Mail Transfer Protocol (SMTP)

• 80 : World Wide Web (HTTP)

• 137/138/139 : NetBIOS (Microsoft File Sharing)

• 143 : Internet Mail Protocol (IMAP)

• 443 : HTTP protocol over TLS/SSL

• 2049 : NFS

• 2346-2349 : Redstorm Game Servers

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 10



Socket Communication

• The client and server can now communicate by writing to or
reading from their sockets.

• So, what is a socket?

A socket is one endpoint of a two-way communication
link between two programs running on the network. A
socket is bound to a port number so that the TCP layer
can identify the application that data is destined to be
sent.

• The java.net package in the Java platform provides the Socket
and ServerSocket classes.

• Socket class sits on top of a platform-dependent
implementation, hiding the details of any particular system
from your Java program.

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 11



Example : Echo Client and Server

• The Echo server simply receives data from its client and echoes
it back.

• EchoClient creates a socket thereby getting a connection to the
Echo server.

• It reads input from the user on the standard input stream, and
then forwards that text to the Echo server by writing the text
to the socket.

• The server echoes the input back through the socket to the
client.

• The client program reads and displays the data passed back to
it from the server:

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 12



Echo Process

User input Sending to server

Client Server

Written to screen Sending to client

Echo

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 13



Echo Client

import java.io.*;

import java.net.*;

public class EchoClient {

public static void main(String[] args) throws IOException {

Socket echoSocket = null;

PrintWriter out = null;

BufferedReader in = null;

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 14



Echo Client

try {

echoSocket = new Socket("taranis", 7);

out = new PrintWriter(echoSocket.getOutputStream(), true);

in = new BufferedReader(new InputStreamReader(

echoSocket.getInputStream()));

} catch (UnknownHostException e) {

System.err.println("Don’t know about host: taranis.");

System.exit(1);

} catch (IOException e) {

System.err.println("Couldn’t get I/O for "

+ "the connection to: taranis.");

System.exit(1);

}

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 15



Echo Client

String userInput;

BufferedReader stdIn = new BufferedReader(

new InputStreamReader(System.in));

while ((userInput = stdIn.readLine()) != null) {

out.println(userInput);

System.out.println("echo: " + in.readLine());

}

out.close();

in.close();

stdIn.close();

echoSocket.close();

}

}

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 16



Step one: Connect to server

• The first step is to establish a connection with the server.
echoSocket = new Socket("taranis", 7);

• If the server is unreachable, an UnknownHostException is
thrown.

• Next, we need to set up I/O.
out = new PrintWriter(echoSocket.getOutputStream(), true);

in = new BufferedReader(new InputStreamReader(echoSocket.getInputStream()));

• To send data to the server, we use a PrintWriter (which allows
us to write to an output stream).

• To receive data, we use a BufferedReader (like the one we use
to read from STDIN).

• If we can’t set up our I/O, an IOException is thrown.

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 17



Step Two: Read from STDIN

• We can read from STDIN using a BufferedReader object.

BufferedReader stdIn = new BufferedReader(new InputStreamReader(System.in));

String userInput;

while ((userInput = stdIn.readLine()) != null) { ...

• Data read from STDIN is sent directly to the server.

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 18



Step Three: Sending and receiving

• Data is send to the server by writing to the output stream
using the PrintWriter object.

out.println(userInput);

• Data is received by reading the input stream with the
BufferedReaderobject.

System.out.println("echo: " + in.readLine());

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 19



Step Four: Closing the connection

• Once we are finished communicating with the server, we can
close our socket.

out.close();

in.close();

stdIn.close();

echoSocket.close();

• First statement closes our output stream.

• Second statement closes our input stream.

• Third statement closes our link on the STDIN stream.

• Fourth statement closes the socket to the server (and the
connection).

• Reading/Writing to a closed stream/socket causes an exception.

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 20



Echo Server

• Opening and closing a socket on a server is very similar to
opening and closing a socket on a client.

• However, the server uses two types of socket

– A ServerSocket to listen for new connections.

– A regular Socket to communicate with the client.

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 21



Step One: Wait from incoming connection

try {

serverSocket = new ServerSocket(4444);

catch (IOException e) {

System.out.println("Could not listen on port: 4444");

System.exit(-1)

}

• The following code sets up a server socket and waits for
incoming connections on port 4444.

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 22



Step Two: Accepting a new connection

Socket clientSocket = null;

try {

clientSocket = serverSocket.accept();

} catch (IOException e) {

System.out.println("Accept failed: 4444");

System.exit(-1);

}

• To accept a connection, the accept() method must be called.

• The accept() method is a blocking I/O call, it will not return
until a new connection is established.

• Once the connection is established, the server can use the
Socket object like we saw in the client example (I/O streams).

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 23



Step Three: Closing the server socket

• Once the server socket is closed, the server will not accept any
incoming communication.

serverSocket.close();

• This call does not affect sockets that are already established.

• To disconnect clients from the server, each socket must be
individually closed.

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 24



Supporting Multiple Clients

• The echo server we described can listen for and handle a single
connection request.

• However, multiple client requests can come into the same port.

• Client connection requests are queued at the port, so the server
must accept the connections sequentially.

• The server can service them simultaneously through the use of
threads - one thread per each client connection.
while (true) {

accept a connection ;

create a thread to deal with the client ;

end while

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 25



UDP Sockets

• UDP sockets are outside the scope of this class.

• They work in a connectionless mode.

• UDP are much faster than typical TCP connections.

• UDP provides no error handling (detection, recovery, etc).

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 26



Warning about Sockets

• The Java Socket class sends data in plain text.

• If you want some improved security, you might want to look at
SSLSocket which is more secure, but much more complicated
to use.

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 27



Java Sockets

Last chance for questions about network sockets . . .

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 28



What is Serialization

Serialization is the process of taking the memory data
structure of an object and encoding it into a serial (hence
the term) sequence of bytes. This encoded version can then
be saved to disk, sent across a network connection, or
otherwise communicated to a recipient.

(from Wikipedia.org)

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 29



Why do I need Serialization?

In Java, serialization can be used for 2 things:

• Remote Method Invocation (RMI)–communication between
objects via sockets

• Lightweight persistence–the archival of an object for use in a
later invocation of the same program

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 30



How do I use Serialization?

Java provides to objects in java.io

• ObjectInputStream

• ObjectOutputStream

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 31



Writing to an ObjectOutputStream

FileOutputStream out = new FileOutputStream("theTime");

ObjectOutputStream s = new ObjectOutputStream(out);

s.writeObject("Today");

s.writeObject(new Date());

s.flush();

• ObjectOutputStream must be constructed on another stream.

• The writeObject method serializes the specified object,
traverses its references to other objects recursively, and writes
them all.

• The writeObject method throws a NotSerializableException if
it’s given an object that is not serializable.

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 32



Reading from an ObjectInputStream

FileInputStream in = new FileInputStream("theTime");

ObjectInputStream s = new ObjectInputStream(in);

String today = (String)s.readObject();

Date date = (Date)s.readObject();

• ObjectInputStream must be constructed on another stream.

• The objects must be read from the stream in the same order in
which they were written.

• The readObject method deserializes the next object in the
stream and traverses its references to other objects recursively
to deserialize all objects that are reachable from it.

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 33



Data types in ObjectStreams

• ObjectOutputStream implements many methods for writing
primitive data types, such as the writeInt method.

• ObjectInputStream also implements methods for reading
primitive data types.

• The return value from readObject is an object that is cast to
and assigned to a specific type.

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 34



Serialization over sockets

• I can build my ObjectOutputStream or ObjectInputStream over
Socket stream.

socClient = new Socket(serverIp, serverPort);

socClient.setSoTimeout(10000);

socketOut = new ObjectOutputStream(socClient.getOutputStream());

socketIn = new ObjectInputStream(socClient.getInputStream());

socketOut.flush();

• Object serialization over sockets is identical to object
serialization over files.

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 35



Providing Object Serialization for Your Classes

• An object is serializable only if its class implements the
Serializable interface.

package java.io;

public interface Serializable {

};

• Making instances of your classes serializable is trivial. You just
add the implements Serializable clause to your class
declaration.

public class MySerializableClass implements Serializable { ...

• You don’t need to add any methods. ObjectOutputStream and
ObjectInputStream have default method for serialization.

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 36



Customizing Serialization

• Sometimes, default serialization can be slow, and a class might
want more explicit control over the serialization.

• You can customize serialization for your classes by providing
two methods for it: writeObject and readObject.

• Custom serialization is outside the scope of this class, but you
can find more detail in the Sun’s tutorial.

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 37



Protecting Sensitive Information

• When developing a class that provides controlled access to
resources, you must take care to protect sensitive information
and functions.

• Several techniques are available to protect sensitive data in
classes.

• The easiest is to mark fields that contain sensitive data as
private transient.

• transient and static fields are not serialized or deserialized.

• Sun’s tutorial has additional information on protecting
sensitive data.

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 38



Warning about Serialization

• The Java specifications did not provide serialization
compatibility between JVMs (or even versions of JVM).

• However, Sun seems to have remove this warning from its
documentation.

• Serialization should be compatible between JVM.

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 39



Summary

• Java Sockets work a lot like any other TCP/IP sockets.

• Java provides two socket objects : Socket and ServerSocket.

• Communicating over sockets is identical to reading/writing to
files.

• Java provides serialization as a mean to save object and
transmit them.

• ObjectOutputStream and ObjectInputStream can be used file
any kind of streams (files, socket, etc).

• By implementing Serializable, your objects will be serializable.

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 40



Tool of the day: Google NewsGroups

• Google Groups contains the entire archive of Usenet discussion
groups dating back to 1981.

• The database containing more than 800 million posts (few
terabytes of data).

• This may be your most important resource when debugging.

http://groups.google.ca/

• The Google 20 Year Usenet Timeline is worth reading.

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 41


