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Announcements

• Midterm is in one week.

• I’ll try to post some information on the midterm this weekend.

• Don’t forget that the midterm is in Leacock 26.

• The last class for midterm material is today.
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Last lecture . . .

• Java provides many tools to implement threading behavior.

• When implementing threads, you have the choice between
extending Thread and implementing Interface.

• Methods such as yield(), sleep(), wait(), notify() and
notifyAll() allow you to control the behavior of your threads.

• We have barely scratched the surface: timers, thread groups,
priorities, etc.

• There are many more issues you have to deal with when
programming concurrent behavior: race condition, atomicity,
sharing, etc.

• If you’re interested in learning more about concurrency, check
out Comp-409.
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References and additional material

• This course is heavily inspired from the Sun’s Socket Tutorial
and Sun’s IO Tutorial (i.e. a lot of material was taken directly
from the tutorial):

http://java.sun.com/docs/books/tutorial/networking/sockets/

http://java.sun.com/docs/books/tutorial/essential/io/serialization.html

• A good (but advanced and expensive) book on sockets would
be:

Unix Network Programming

W. Richard Stevens

Prentice Hall PTR
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Network Sockets

• To understand Java sockets, we must first understand TCP/IP
sockets.

• Every unique machine has a unique address called an IP
address. (ex: 132.206.51.234 is the CS mail server)

• IP address are hard to remember, so we also have the domain
name system (ex: mail.cs.mcgill.ca)

• Every machine has a fixed number of ports (65536).

• Ports allows us to recognize IP data from different applications.

• The port range is divided as follows

– 0-1023: The Well Known Ports

– 1024-49151: The Registered Ports

– 49152-65535: The Dynamic and/or Private Ports
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Client requests connection

Server

Client

Listening Port

80

1030

To make a connection request, the client tries to rendezvous with
the server on the server’s machine and port.
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Server accepts connection

Server

Client

Listening Port

80

1030

Upon acceptance, the server gets a new socket.
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Another client requests connection

Server

Client 1

Listening Port

80

1030

Client 2

4283

It needs a new socket so that it can continue to listen to the
original socket for connection requests while tending to the needs of
the connected client.

February 16, 2004 Lecture 12 – Comp 303 : Programming Techniques Page 8



Server accepts connection

Server

Client 1

Listening Port

80

1030

Client 2

4283
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Important listening ports

• 20/21 : File transfer protocol (FTP)

• 22 : Secure Shell (SSH)

• 23 : Telnet

• 25 : Simple Mail Transfer Protocol (SMTP)

• 80 : World Wide Web (HTTP)

• 137/138/139 : NetBIOS (Microsoft File Sharing)

• 143 : Internet Mail Protocol (IMAP)

• 443 : HTTP protocol over TLS/SSL

• 2049 : NFS

• 2346-2349 : Redstorm Game Servers
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Socket Communication

• The client and server can now communicate by writing to or
reading from their sockets.

• So, what is a socket?

A socket is one endpoint of a two-way communication
link between two programs running on the network. A
socket is bound to a port number so that the TCP layer
can identify the application that data is destined to be
sent.

• The java.net package in the Java platform provides the Socket
and ServerSocket classes.

• Socket class sits on top of a platform-dependent
implementation, hiding the details of any particular system
from your Java program.
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Example : Echo Client and Server

• The Echo server simply receives data from its client and echoes
it back.

• EchoClient creates a socket thereby getting a connection to the
Echo server.

• It reads input from the user on the standard input stream, and
then forwards that text to the Echo server by writing the text
to the socket.

• The server echoes the input back through the socket to the
client.

• The client program reads and displays the data passed back to
it from the server:
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Echo Process

User input Sending to server

Client Server

Written to screen Sending to client

Echo
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Echo Client

import java.io.*;

import java.net.*;

public class EchoClient {

public static void main(String[] args) throws IOException {

Socket echoSocket = null;

PrintWriter out = null;

BufferedReader in = null;
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Echo Client

try {

echoSocket = new Socket("taranis", 7);

out = new PrintWriter(echoSocket.getOutputStream(), true);

in = new BufferedReader(new InputStreamReader(

echoSocket.getInputStream()));

} catch (UnknownHostException e) {

System.err.println("Don’t know about host: taranis.");

System.exit(1);

} catch (IOException e) {

System.err.println("Couldn’t get I/O for "

+ "the connection to: taranis.");

System.exit(1);

}
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Echo Client

String userInput;

BufferedReader stdIn = new BufferedReader(

new InputStreamReader(System.in));

while ((userInput = stdIn.readLine()) != null) {

out.println(userInput);

System.out.println("echo: " + in.readLine());

}

out.close();

in.close();

stdIn.close();

echoSocket.close();

}

}
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Step one: Connect to server

• The first step is to establish a connection with the server.
echoSocket = new Socket("taranis", 7);

• If the server is unreachable, an UnknownHostException is
thrown.

• Next, we need to set up I/O.
out = new PrintWriter(echoSocket.getOutputStream(), true);

in = new BufferedReader(new InputStreamReader(echoSocket.getInputStream()));

• To send data to the server, we use a PrintWriter (which allows
us to write to an output stream).

• To receive data, we use a BufferedReader (like the one we use
to read from STDIN).

• If we can’t set up our I/O, an IOException is thrown.
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Step Two: Read from STDIN

• We can read from STDIN using a BufferedReader object.

BufferedReader stdIn = new BufferedReader(new InputStreamReader(System.in));

String userInput;

while ((userInput = stdIn.readLine()) != null) { ...

• Data read from STDIN is sent directly to the server.
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Step Three: Sending and receiving

• Data is send to the server by writing to the output stream
using the PrintWriter object.

out.println(userInput);

• Data is received by reading the input stream with the
BufferedReaderobject.

System.out.println("echo: " + in.readLine());
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Step Four: Closing the connection

• Once we are finished communicating with the server, we can
close our socket.

out.close();

in.close();

stdIn.close();

echoSocket.close();

• First statement closes our output stream.

• Second statement closes our input stream.

• Third statement closes our link on the STDIN stream.

• Fourth statement closes the socket to the server (and the
connection).

• Reading/Writing to a closed stream/socket causes an exception.
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Echo Server

• Opening and closing a socket on a server is very similar to
opening and closing a socket on a client.

• However, the server uses two types of socket

– A ServerSocket to listen for new connections.

– A regular Socket to communicate with the client.
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Step One: Wait from incoming connection

try {

serverSocket = new ServerSocket(4444);

catch (IOException e) {

System.out.println("Could not listen on port: 4444");

System.exit(-1)

}

• The following code sets up a server socket and waits for
incoming connections on port 4444.
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Step Two: Accepting a new connection

Socket clientSocket = null;

try {

clientSocket = serverSocket.accept();

} catch (IOException e) {

System.out.println("Accept failed: 4444");

System.exit(-1);

}

• To accept a connection, the accept() method must be called.

• The accept() method is a blocking I/O call, it will not return
until a new connection is established.

• Once the connection is established, the server can use the
Socket object like we saw in the client example (I/O streams).
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Step Three: Closing the server socket

• Once the server socket is closed, the server will not accept any
incoming communication.

serverSocket.close();

• This call does not affect sockets that are already established.

• To disconnect clients from the server, each socket must be
individually closed.
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Supporting Multiple Clients

• The echo server we described can listen for and handle a single
connection request.

• However, multiple client requests can come into the same port.

• Client connection requests are queued at the port, so the server
must accept the connections sequentially.

• The server can service them simultaneously through the use of
threads - one thread per each client connection.
while (true) {

accept a connection ;

create a thread to deal with the client ;

end while
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UDP Sockets

• UDP sockets are outside the scope of this class.

• They work in a connectionless mode.

• UDP are much faster than typical TCP connections.

• UDP provides no error handling (detection, recovery, etc).
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Warning about Sockets

• The Java Socket class sends data in plain text.

• If you want some improved security, you might want to look at
SSLSocket which is more secure, but much more complicated
to use.
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Java Sockets

Last chance for questions about network sockets . . .
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What is Serialization

Serialization is the process of taking the memory data
structure of an object and encoding it into a serial (hence
the term) sequence of bytes. This encoded version can then
be saved to disk, sent across a network connection, or
otherwise communicated to a recipient.

(from Wikipedia.org)
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Why do I need Serialization?

In Java, serialization can be used for 2 things:

• Remote Method Invocation (RMI)–communication between
objects via sockets

• Lightweight persistence–the archival of an object for use in a
later invocation of the same program
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How do I use Serialization?

Java provides to objects in java.io

• ObjectInputStream

• ObjectOutputStream
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Writing to an ObjectOutputStream

FileOutputStream out = new FileOutputStream("theTime");

ObjectOutputStream s = new ObjectOutputStream(out);

s.writeObject("Today");

s.writeObject(new Date());

s.flush();

• ObjectOutputStream must be constructed on another stream.

• The writeObject method serializes the specified object,
traverses its references to other objects recursively, and writes
them all.

• The writeObject method throws a NotSerializableException if
it’s given an object that is not serializable.
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Reading from an ObjectInputStream

FileInputStream in = new FileInputStream("theTime");

ObjectInputStream s = new ObjectInputStream(in);

String today = (String)s.readObject();

Date date = (Date)s.readObject();

• ObjectInputStream must be constructed on another stream.

• The objects must be read from the stream in the same order in
which they were written.

• The readObject method deserializes the next object in the
stream and traverses its references to other objects recursively
to deserialize all objects that are reachable from it.
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Data types in ObjectStreams

• ObjectOutputStream implements many methods for writing
primitive data types, such as the writeInt method.

• ObjectInputStream also implements methods for reading
primitive data types.

• The return value from readObject is an object that is cast to
and assigned to a specific type.
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Serialization over sockets

• I can build my ObjectOutputStream or ObjectInputStream over
Socket stream.

socClient = new Socket(serverIp, serverPort);

socClient.setSoTimeout(10000);

socketOut = new ObjectOutputStream(socClient.getOutputStream());

socketIn = new ObjectInputStream(socClient.getInputStream());

socketOut.flush();

• Object serialization over sockets is identical to object
serialization over files.
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Providing Object Serialization for Your Classes

• An object is serializable only if its class implements the
Serializable interface.

package java.io;

public interface Serializable {

};

• Making instances of your classes serializable is trivial. You just
add the implements Serializable clause to your class
declaration.

public class MySerializableClass implements Serializable { ...

• You don’t need to add any methods. ObjectOutputStream and
ObjectInputStream have default method for serialization.
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Customizing Serialization

• Sometimes, default serialization can be slow, and a class might
want more explicit control over the serialization.

• You can customize serialization for your classes by providing
two methods for it: writeObject and readObject.

• Custom serialization is outside the scope of this class, but you
can find more detail in the Sun’s tutorial.
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Protecting Sensitive Information

• When developing a class that provides controlled access to
resources, you must take care to protect sensitive information
and functions.

• Several techniques are available to protect sensitive data in
classes.

• The easiest is to mark fields that contain sensitive data as
private transient.

• transient and static fields are not serialized or deserialized.

• Sun’s tutorial has additional information on protecting
sensitive data.
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Warning about Serialization

• The Java specifications did not provide serialization
compatibility between JVMs (or even versions of JVM).

• However, Sun seems to have remove this warning from its
documentation.

• Serialization should be compatible between JVM.
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Summary

• Java Sockets work a lot like any other TCP/IP sockets.

• Java provides two socket objects : Socket and ServerSocket.

• Communicating over sockets is identical to reading/writing to
files.

• Java provides serialization as a mean to save object and
transmit them.

• ObjectOutputStream and ObjectInputStream can be used file
any kind of streams (files, socket, etc).

• By implementing Serializable, your objects will be serializable.
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Tool of the day: Google NewsGroups

• Google Groups contains the entire archive of Usenet discussion
groups dating back to 1981.

• The database containing more than 800 million posts (few
terabytes of data).

• This may be your most important resource when debugging.

http://groups.google.ca/

• The Google 20 Year Usenet Timeline is worth reading.
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