
C Compilation Model

Comp-206 : Introduction to Software Systems
Lecture 9

Alexandre Denault
Computer Science
McGill University

Fall 2006

Midterm

■ Date: Thursday, October 19th, 2006
■ Time: from 16h00 to 17h30
■ Content: Everything we have seen in class up to C

pointers.
 Unix operating system
 Shell Scripting
 Python
 C (including pointers)

■ Exact content of the midterm will be discussed in a latter
class and posted on the web.

Servers - Sparcs

■ skinner.cs.mcgill.ca
 Hardware/OS: SunOS 5.8 sun4u sparc SUNW,Ultra-4
 CPUs: 4 x 400 MHz (sparcv9 processors)

■ willy.cs.mcgill.ca
 Hardware/OS: SunOS 5.8 sun4u sparc SUNW,Ultra-80
 CPUs: 4 x 450 MHz (sparcv9 processors)

■ nova.cs.mcgill.ca
 Hardware/OS: SunOS 5.8 sun4u sparc SUNW,Ultra-60
 CPUs: 2 x 450 MHz (sparcv9 processors)

■ mimi.cs.mcgill.ca
 Hardware/OS: SunOS 5.8 sun4u sparc SUNW,Ultra-250
 CPUs: 2 x 400 MHz (sparcv9 processors)

Servers - Intel

■ troy.cs.mcgill.ca
 Hardware/OS: Gentoo GNU/Linux running on a 2.6 kernel
 CPUs: 2 x 3.40 GHz (Intel Pentium 4 processors)

■ freebsd.cs.mcgill.ca
 Hardware/OS platform: FreeBSD 5.5-RELEASE-p3
 CPUs: 2 x 3.40 GHz (Intel Pentium 4 processors)

Quiz

■ Give a regular expression that will match on the
following:
 string “Quiz”
 line starting with string “Quiz”' or a digit
 line ending with string “Quiz”
 the string quiz, where the characters can be any case, e.g.,

QuIz, quiz, Quiz, etc.
 the string quiz, where it can be mis-spelled with K for Q and W

for U, e.g., kwiz, qwiz, etc.
 a string of at least 3 digits, starting with 7
 lines containing no non-numeric characters, but at least one

numeric character.
■ You have a directory containing a lot of files and

subdirectories, and you want to copy all of them except
for the directory called big_dir. How do you do it?

History of C

■ The C programming language was created as a
successor for B and BCPL.

■ It’s creation was parallel to the development of early
Unix operating systems (1969-1973).

■ At the time, one of C’s strength was it’s portability.
■ The first widely available description of the language

appeared in 1978,The C Programming Language (also
known as the white book).

■ One of C’s most popular successor is C++, release in
1986.

Hello World

■ Traditionally, Hello World is the first application you write
when starting with a new programming language.

#include <stdio.h>

int main(int argc, char *argv[]) {
 printf("Hello World");
 return 0;
}

Programming in C

From the users perspective, building a C program can be
broken down in three steps:

■ Writing the source : Using an editor to write the source.
 You can use any text editor to write C code.
 Old-school C programmer often use Unix text editors such as

Vi or Vim.
 For large scale projects, an IDE (integrated development

environment) is preferable.
 Whatever editor you use, it should feature syntax highlighting

■ C programs are usually composed of several source files
(we will take a look at this latter).

Programming in C (cont.)

■ The next step is to compile the program to a format the
operating system can run.

■ A compiler is a program that translate a language to
another.
 – A C compiler translates C code to machine code.
 – A Java compiler translates Java code to byte code.

■ For this course, we will use the GNU cc compiler (also
known as gcc).

■ This compiler is installed on all the lab machines and
servers.

Programming in C (cont.)

■ By default, the gcc compiler produces an executable files
named a.out.

■ You can execute your program by running the a.out
file.
 Don’t forget that a.out must be chmod executable. The

compiler usually takes care of this.
■ Executable are compiled for specific architecture. If you

compile a program in the labs (Intel), it will not run on
Mimi (Sun).

C Compilation Processor

Preprocessor

Compiler

Linker

Source code

Executable code

Libraries
Assembler

Preprocessor

■ The preprocessor is the first step of the compilation
process.

■ It prepares the source files for the compiler.
■ The preprocessor is responsible for . . .

 Removing all the comments from the source files.
 Executing the preprocessor directives (#define and #include).

C Compiler

■ As previously mentioned, the compiler translate source
code from one language to another.

■ The gcc compiler translate C code to assembler.
■ Lets take the Hello World example.

#include <stdio.h>

int main(int argc, char *argv[]) {
 printf("Hello World");
 return 0;
}

Intel Assembly

main:
pushl %ebp
movl %esp, %ebp
subl $8, %esp
andl $-16, %esp
movl $0, %eax
subl %eax, %esp
subl $12, %esp
pushl $.LC0
call printf
addl $16, %esp
movl $0, %eax
leave
ret

Sparc Assembly

main:
save %sp, -112, %sp
st %i0, [%fp+68]
st %i1, [%fp+72]
sethi %hi(.LLC0), %o1
or %o1, %lo(.LLC0), %o0
call printf, 0
nop
mov 0, %i0
ret
restore

Assembler

■ The assembler takes assembly code and transforms it
into object code.

■ Although object code is mostly composed of machine
code, it cannot be executed by the operating system.
 Object code does not have the necessary references to

external functions and libraries to properly operate.

Linker

■ A linker takes the various outputs of a compiler and
combines them to create an application.
 Sources files are compiled separately by the compiler.
 Those sources might reference a function that exists

elsewhere.
 The compiler leaves empty references to those functions.
 The linker fills those references using the compiled output of all

the files and the libraries available on the system.
■ Once all the empty references have been resolved, the

linker combines all the compiler output to create an
executable.

Libraries

■ C itself is a relatively small programming language.
■ Most of it’s functionalities is provided through function

libraries.
 C provides a library for read/write to files and the screen.
 C provides a library to handle complicated math functionalities.
 C provides a library to retrieve the current time from the OS.

■ • A programmer is free (and encouraged) to use these
libraries.

■ • The linker takes care to resolve references to library
calls.

Gcc

■ As previously mentioned, Gcc is the Gnu C Compiler.
■ Gcc encapsulates all the different step of the compilation

process.
 Create main.i, the preprocessed version of main.c
gcc -E main.c

 Create main.s, the assembler code of main.c
gcc -S main.c

 Create main.o, the object code of main.c
gcc -c main.c

 Create a.out, the compiled executable of main.c
gcc main.c

Gcc options

■ -o filename : allows you to specify the name of the output
executable (instead of a.out).

■ - v : enable verbose mode (more output information).
■ -w : suppresses warning messages (bad idea)
■ -W : extra warning messages (good idea)
■ -Wall : all warning messages (best idea)
■ -O1 : Optimize code for size and speed.
■ -O2 : Optimize even more.

C vs Java - Similarities

■ C and Java have very similar syntax.
 Variable / function declarations
 Variable types : char, int, long, float, double
 Conditional statements : If, For, While

■ The notion of visibility is similar
 Variables declared in functions only exists in functions

C vs Java - Difference

■ C programming is much more low level
 Pointers and memory allocation

■ C is not object oriented
 No classes, no static methods, no interfaces.
 Libraries are completely different (no LinkedList, etc).
 Structures allow to group data together

■ C doesn't have Strings or boolean
 Strings are replaced by character arrays.
 boolean simply doesn't exist.

■ C is a single pass compiler
 Need to declare functions
 Header files

■ C has a preprocessor

C Functions

■ A C function has the same syntax as a Java function.

type function_name (parameters)
{
 local variables

 C Statements

}

■ Functions have a return type, just like Java.
■ However, unlike Java, they are not part of a class.
■ In C, all functions behave as they were static.

Variables

■ Two types of variables exists in C
 Primitives
 Pointers

■ C primitives are very similar to Java primitives
 Char (1 byte, -127 to 128)
 Unsigned char (1 byte, 0 to 255)
 Short (2 bytes, -32768 to 32767)
 Int (4 bytes, -291 to 291 – 1)
 Float (4 bytes, ...)
 Double (8 bytes, ...)

■ An unsigned variable is a numerical variable without a
negative bit (thus allowing for larger numbers).

■ Notice there are no booleans or strings!

Global Variables

■ Variables not declared in a function are reference to as
global.

■ Global variables can be accessed by any function in the
program.

■ Global variables are very similar to static variable, only
one copy exist.

■ Global variable should be avoided
 Since any functions can access global variable, it's difficult to

control access to those variable (an complicate debugging).
 They are not considered clean.

