
Grep and Shell Programming

Comp-206 : Introduction to Software Systems
Lecture 7

Alexandre Denault
Computer Science
McGill University

Fall 2006

Teacher's Assistants

Robert Kaplow
Wednesday, 9:30 to 11:30
T.A. room, Trottier, 3rd floor

Jun Wang
Friday, 14h00 to 16h00

T.A. room, Trottier, 3rd floor
Michael Hawker

Monday, 14h30 to 16h30
McConnell, Room 322

Editor

■ Command line text editors allow you to create/edit files at
the command line. Several text editors are available.
 vi is one of the original text editor available on Unix. It's very

difficult to use and learn. However, its very powerful and
available on every Unix machines.

 pico is a simple text editor based on the pine mail client. It's
very easy to use, and is available on most Unix machines.

 emacs is a very popular and powerful. Considering the number
of features it has, it should be considered a heavy weight
client.

■ You can also use graphical text editors, such as bluefish,
gedit or jedit.

■ As a long term investment, I highly suggest you learn vi.

Example of Text Editors

Text based, console

■ Vi
■ Emacs
■ Pico
■ Ed
■ JStar / Jove
■ Edit (dos)

Graphic based, GUI

■ Xemacs
■ Bluefish
■ Gedit (Gnome)
■ Kate (KDE)
■ Jedit (java)
■ Notepad (windows)

Regular Expressions

■ Several Unix commands and editors allow you to search
on text patterns.

■ These text patterns are known as regular expressions
(regex).

■ Examples of regular expressions include:
 Text starting with the letter “a” and finishing with the letter “z”.
 Text with at least one number, but not starting with the letter

“a” or “b”.
 Text with a letter repeated three times in a row.
 Text contains the string “abc” exactly three times.

Regex Syntax

■ Take a look at the Regex Syntax quick sheet.
 Literal characters are combination to represent special

characters.
 Character classes are combination to represent groups of

characters.
 Repetition indicate how often a character should be appear to

be a match.
 Anchors determine where the matching string must be found.

grep, sed and awk

■ grep [options] string file
 search for occurrences of the string.

■ sed [options] file
 stream editor for editing files.

■ awk [options] file
 scan for patterns in a file and process the results.

Grep

■ grep is used to search for the occurrence of a regular
expression in files.

■ Regular expressions, are best specified in apostrophes
(or single quotes) when use with grep.

■ Some common options include:
 -i : ignore case
 -c : report only a count of the number of lines containing

matches
 -v : invert the search, displaying only lines that do not match
 -n : display the line number along with the line on which a

match was found
 -l : list filenames, but not lines, in which matches were found

Examples of grep

■ Consider the following text file :
Alex
Marc
Micheal
Ting
Juan
Jeremy
Jessica
Yannick
Nicolas
Jean-Sebastien
Nadeem

Examples of grep (cont.)

■ Grep for a specific string . . .
[adenau][rogue][~/cs206] grep ’Je’ demo.txt
Jeremy
Jessica
Jean-Sebastien
[adenau][rogue][~/cs206] grep -n ’Je’ demo.txt
6:Jeremy
7:Jessica
10:Jean-Sebastien
[adenau][rogue][~/cs206] grep -c ’Je’ demo.txt
3

Examples of grep (cont.)

■ Grep for vowels . . .
[adenau][rogue][~/cs206] grep -i ’^[aeiouy]’ demo.txt
Alex
Yannick
[adenau][rogue][~/cs206] grep -i ’[aeiouy]$’ demo.txt
Jeremy
Jessica
[adenau][rogue][~/cs206] grep -i ’[aeiouy]\{2\}’ demo.txt
Micheal
Juan
Yannick
Jean-Sebastien
Nadeem

Examples of grep (cont.)

■ Grep for specific characters . . .
[adenau][rogue][~/cs206] grep -i ’^.e’ demo.txt
Jeremy
Jessica
Jean-Sebastien
[adenau][rogue][~/cs206] grep -i ’^.e\|a.$’ demo.txt
Micheal
Juan
Jeremy
Jessica
Nicolas
Jean-Sebastien

When to use grep

■ Grep is a useful tool to find specific strings.
 Outlining all the errors in a log file.
 Finding a specific string in a collection of source files.

■ It becomes an even more powerful tool when combined
to other utilities.
[adenau][rogue][~/cs206] ps -e | grep ’java’
14256 pts/1 00:18:30 java
21395 ? 00:00:08 java
11218 pts/4 00:03:51 java

Shell Scripting

■ A shell programs (or script) containing a series of shell
commands.
 The first line of the script should start with #! which indicates to

the kernel that the script is directly executable.
 You immediately follow this with the name of the shell, or

program (spaces are allowed), to execute, using the full path
name.

■ Different languages can be use to script (sh, bash, perl,
python, ruby, etc).

■ To set up a Bourne shell script the first line would be:
#! /bin/sh

■ You also need to specify that the script is executable by
setting the proper permissions on the file.
% chmod +x shell_script

Variables

■ There are three kinds of variables in a shell script:
 Environment Variable : these variables are used to customize

the operating system and the shell to your needs.
 User-created : these variables are created by the script itself.
 Positional Parameters : these variables store the parameter

used to start the script.

Positional Variables

■ $# : number of arguments on the command line
■ $- : options supplied to the shell
■ $? : exit value of the last command executed
■ $$: process number of the current process
■ $! : process number of the last command done in

background
■ $n : argument on the command line, where n is from 1

through 9, reading left to right
 $0 : the name of the current shell or program
 $* : all arguments on the command line (”$1 $2 ... $9”)
 $@ : all arguments on the command line, each separately

quoted (”$1” ”$2” . . . ”$9”)

Your first Unix Script

■ The following script will print out the positional variables:
#!/bin/sh
echo "$#:" $#
echo ’$-:’ $-
echo ’$?:’ $?
echo ’$$:’ $$
echo ’$!:’ $!
echo ’$3:’ $3
echo ’$0:’ $0
echo ’$*:’ $*
echo ’$@:’ $@

Shell Scripts

■ A shell script runs from top to bottom.
■ If statements and loop can be used to alter the control

flow.
■ You can also create functions.
■ The # character is usually used to denote a comment.
■ The #! at the start of the script indicates which program

should execute/interpret the script.
■ Unlike other programming languages, scripts are

sometime sensitive to extra spaces.

Simple Script

■ The following script gathers information about the system
and stores it in a file specified at the command line.
#!/bin/sh
uname -a > $1
date >> $1
who >> $1

■ The output was as follows :
[adenau][rogue][~/cs206] ./info.sh output.txt
[adenau][rogue][~/cs206] cat output.txt
Linux rogue 2.6.12-gentoo-r4 #1 SMP ...
Thu Aug 10 10:57:38 EDT 2006
adenau pts/0 Aug 10 08:04 (dz2.cs.mcgill.ca)

Reading from STDIN

■ The read command allows you to read a string from
STDIN.

■ That string is then stored in the specified variable.

#!/bin/sh

echo "What is your name?"
read name
echo "Your name is $name."

Arithmetic Operations

■ The shell was never designed for numerical work.
■ To do mathematical (integer) operations, you can to use

the expr command.
■ The following example script adds two numbers passed

at the command line and outputs the answer to
STDOUT.

#!/bin/sh

sum=‘expr $1 + $2‘
echo $sum

test

■ Before discussing control statements (if, for, etc), we
need to check out the test command.

■ The test command is used to evaluate an expression, or
in our case, a condition.

■ • Although shells do contain operators to test a condition,
they are not as versatile and universal as test.

■ The test command can evaluate condition at the file,
string or integer level.

File Tests

■ -r : true if it exists and is readable
■ -w : true if it exists and is writable
■ -x : true if it exists and is executable
■ -f : true if it exists and is a regular file
■ -d : true if it exists and is a directory
■ -h or -L : true if it exists and is a symbolic link
■ and many more . . .

String Tests

■ -z string : true if the string length is zero
■ -n string : true if the string length is non-zero
■ string1 = string2 : true if string1 is identical to string2
■ string1 != string2 : true if string1 is non identical to

string2
■ string : true if string is not NULL

Integer Tests

■ n1 -eq n2 : true if integers n1 and n2 are equal
■ n1 -ne n2 : true if integers n1 and n2 are not equal
■ n1 -gt n2 : true if integer n1 is greater than integer n2
■ n1 -ge n2 : true if integer n1 is greater than or equal to

integer n2
■ n1 -lt n2 : true if integer n1 is less than integer n2
■ n1 -le n2 : true if integer n1 is less than or equal to

integer n2

Logical Operators for Tests

■ ! : negation (unary)
■ -a : and (binary)
■ -o : or (binary)
■ () : expressions within the () are grouped together. You

may need to quote the () to prevent the shell from
interpreting them.

