' Source Control

Comp-206 : Introduction to Software Systems
Lecture 21

Alexandre Denault
Computer Science
McGill University
Fall 2006

' Source Revision /| Control

m Source Control is about the management of revision.

« Through its development, many components of an application
experiences changes.

« Changes to these components are noted with a revision
number, kind of like with paper documents.

m Source Control allows you to collect these revisions and
compare them.

+ For tracking/auditing purposes.
+ For debugging purposes.

y

' Central Code Location

B The code is located in one central location (i.e. one
server) called a code repository.

®m Fach developer acquires his copy of the code for his
machine.

+ He does all the development locally, on his machine.

® \When he wants to confirm a change and propagate this
change to all the other developers, he commits his code
to the repository.

+ He can update his local copy with changes other people
commit to the central location.

B Fach committed change is assigned a revision number.

y

' Team Tool

B Source Control has also become an invaluable tool for
team work in software development.

m |t allows large groups of developers to work on the same
project, and minimizes the risks of overlapping changes.

B Fach developer can work on his local copy, without
affecting other developers.

® Once he is sure his changes are stable, he simply
commits it to the repository.

y

' CVS

m CVS is the Concurrent Versions System, was created in
the mid 1980's.

B |t was recreated as a follow up to an earlier versioning
system called Revision Control System (RCS).
+ RCS was great for individual files, bad for large projects.

® Although very popular in the 1990's, CVS had severe
limitations.

+ You cannot move or rename files in CVS. You have to delete

them and re-add them.

« CVS has difficulty properly retaining permissions.
+ Directories are not versioned.

' SVN

m Subversion (a.k.a. SVN) was developed as a modern
day replacement to CVS.

« Many of the developers working on CVS work on SVN.

®m Subversion has many key features:

« Commits are truly atomic (can't have problem with 2 people
committing at the same time).

« You can now move or rename files.

+ Directory are versioned.

+ Strong integration with Apache.

« Python, Ruby, Perl, and Java language bindings.
« Branching and tagging are faster.

y

' Trunk / Branch / Tags

m Source Control Systems are usually separated into
modules.

B The modules are further separated into three categories:
the trunk, branches and tags (tree analogy).
« The trunk is the main copy of your code.
« Branches are separate copies of your main code.
« Tags are snapshots of the trunk or branches.

y

' Why use branches?

® On a project, most people work on the trunk.

m |f a large change needs to be implemented and it might
affect other people, then a branch is create for them.
+ Developers working on the special change work on the branch.
+ Other developers continue working on the trunk.

® \When the large change is completed, the branch can be
merge backed with the trunk.

« Merging a branch back is a very difficult operation, especially if
a lot of development has been done in the trunk.

® With this strategy, main developers are not affected with

the big change.

' Why use tags?

B As previously mentioned, tags are like snapshots for the
trunk or branches.

® \When developing a large application, companies will
often release both major and minor releases.
+ Major release : Eclipse 3.0!
+ Minor release : Eclipse 3.2
+ Bugfix release : Eclipse 3.2.2

m Before you release software, you usually tag the branch
with the version number.

« Thus, you associate the version number with the revision
number at that time.

B This allows you to do 2 things latter:
« Find which file revision where used for that release.
n. ‘

« Checkout a copy of the branch using those previous revisio

' Another Strategy

B The trunk is used for the main development of the
application.
m Before major release, you create a branch.

« People working on that release continue working on that
branch, making it more stable.

« They are not allowed to add new features.
+ Regular developers continue working on the trunk.

m Before releasing, you tag that branch with the minor
version number.

B Development on the branch is continued as long a the
major release Is supported..

« People can go back to the branch if a minor version is ever

needed. '

' Creating a repository

B To create a repository, you simply need to use the
svhadmin command.

svnadmin create /home/bob/subversion
+ This would create an svn directory in /home/bob/subversion

® The next step would be to set up a trunk/branch/tag
structure.

« Unless you are working on a large project with regular
releases, you don't need a trunk/branches/tags setup
® Note: You cannot create an SVN repository on your CS
account. However, if you need one, the Socs Help
people will be happy to give you special space to do so.

y

y svn

® The svn command is an all purposes tool. It contains all
the necessary functionality to

« checkout code

+ update a repository
+ merge two revisions
« commit code

+ Etc.

y

svn help

® You type in the svn help command to see

usage: svn <subcommand> [options] [args]
Subversion command-line client, version 1.2.3.

Type 'svn help <subcommand>' for help on a specific subcommand.

Most subcommands take file and/or directory arguments, recursing
on the directories. If no arguments are supplied to such a

command, 1t recurses on the current directory (inclusive) by
default.

Available subcommands:
add
blame (prailise, annotate, ann)
cat
checkout (co)
cleanup

commit (ci)

copy (cp)

' URL of repository

B To use a repository, you need to knows it's location.

B |n subversion, the location of the repository is known as
the URL.

B The URL depends on which access method you want to
use to contact the repository.

m For example, if you are using the same machine that the
repository is located, you can use a file URL

file:///home/bob/subversion

® Alternatively, you can tunnel through SSH to reach the
repository.
svn+ssh://username@server/home/bob/subversion

B Some repositories can be accessed through the web

using apache.
http://server/home/bob/subversion A

' Checking Out

svn checkout URL [PATH]

m The first step in using an SVN directory is checking out
the code. This can be done using the svn checkout
command.

svn checkout
svn+ssh://adenaul@svn.cs.mcgill.ca/xtra/cs206/t
runk cs206-trunk

m This will checkout the main branch (trunk) of cs206 in the
cs206-trunk directory.

® You can use the -r option to checkout a specific revision.

y

' Adding

svn add FILES

B To add a file to a repository, you need to first place it in
your checkout directory (in the correct location).

® Then call the svn add command.
m The fill will be added next time you commit your changes.

y

' Status

svn status [PATH]

® For a given path, svn status will give the svn state of
each file.

'A' Added

+ 'C' Conflicted

« 'D' Deleted

+ 'G' Merged

« 'I"Ignored

« 'M' Modified

+ 'R'Replaced

« '"?"item is not under version control

« 'I'"item Is missing

® More information about the output can be found by using I

*

svn help status.

' Committing

svn commit [PATH]

® Once you've tested your changes, you can commit them
to the repository.

® \When committing, you will be asked to supply a short
message.

B This short message should explain what you are
committing:
« Changes you did
+ Reasons for the change
+ Bugs you fixed (including bug id if available)

y

' Updating

svn update [PATH]

m Other people are continuously contributing to the svn
repository.

B To update your code with their latest changes, just use
the svn update command.

B |[f somebody changed lines in a file that you also
changed, a conflict occurs.

« The file is going to be tagged as in a conflicted state.
+ Before you can commit your changes, you need to resolve the

conflict.

' Deleting

svn delete [FILES.
® This command will delete a file from the repository.

®m Note that the file is only delete from the current revision.
+ The file will still exist in past revisions.

y

' Conflict

® \When a conflicted file is found, is it modified as so:
<LKLLLLL mine

if ((1 > 0) && (3 > 0)) |
J++

>S>S>>>>>>> r3]14

if ((1 > 0) && (h < 0)) f{
h__

>>>>>>>>>

B By comparing the two code, you must merge them and
resolve the conflict.

B |n addition, two additional files will be created, one with a
r314 extension and one with a .mine extension. |

' Resolving

svn resolved FILE

® Once both piece of code have been merge, the svn
resolve command must be used to indicate the new state
of the file.

if ((1 > 0) && (3 > 0) && (h < 0)) {
J++
h__

y

' File Locking

B To avoid conflict, some source control scheme offer
locking mechanisms

- Before working a file, you must acquire a lock on a file.
+ Only one lock may be granted per file.
+ After committing your changes, you must release your lock.

B Although no conflict occur, file locking slows down
development, especially on popular files.

y

' Conflict Avoidances

B To minimize the risk of conflicts, some companies have
established "manual” locking scheme.

® One of the most memorable is the stuffed toy locking
system.

+ Only the person with the stuffed toy on his desk can commit his
code to repository.

« A programmer can “acquire” the toy by getting it from its
designated storage.

« Once he is finished committing his code, he must return the toy
to its designated storage.

B Although this solution solves some problems of
simultaneous commits, it
+ shares a lot of problems with file locking.

+ does not prevent conflicts from occurring, just reduces the
chances.

' SourceSafe

B SourceSafe is the version control package solution from
Microsoft, distributed with Visual Studio.

® |t uses a purely file locking mechanism.

m SourceSafe provides tight integration with the Visual
Studio tools.

®m However, no clients for MacOS X or Unix exist.
m SourceSafe works well for small teams (5 or less), but

does not scale well.

' Perforce

m Perforce is the industry solution for revision control.

B |t has an impressive client list
+ Activision, ATI, Cisco, EA, Ericsons, IBM, SCEA, etc
m Perforce supports several operating system and can
integrate itself with several application.
« Visual Studio / Eclipse / Xcode
+ Photoshop
+ 3DS Max, Maya
+ MS Office

y

