
File I/O

Comp-206 : Introduction to Software Systems
Lecture 16

Alexandre Denault
Computer Science
McGill University

Fall 2006 



Take Note

Class on Thursday, November 9th, is canceled
Assignment 2 is due Tuesday, November 14th.
The paper document for Assignment 2 is due 

Wednesday, November 15th.



Files in Unix

■ As previously mentioned, in Unix, everything is a file.
 STDIN, STDOUT and STDERR behave like files.
 Peripherals connected to the computer are also behave like 

files.
 Network communication sockets behave like files.

■ As such, if you know how to manipulate files, you can 
manipulate STDIO, peripherals and sockets.



Types of files

■ Text or ASCII : These files are used to store text using 
the ASCII character encoding. Each byte of the file 
represents a character.
 Special control characters are used to represent an end of line 

(015) or an end of file (003).
 There is a total of 256 different characters in an Ascii file.

■ Binary : All files that use an encoding scheme other that 
ASCII are considered binary. The include image files, 
music files and PDF documents.
 Each byte has a special meaning for that file.
 The meaning of that byte is defined by the encoding format.



stdin, stdout, strerr

■ When a C application is started, three files are opened 
by the operating systems.
 stdin, stdout and stderr

■ The corresponding file pointers are declare in <stdio.h>.
■ You can normally use stdin to read from the keyboard 

and stdout to print to the console.
■ However, stdin and stdout can be redirected to/from 

files, as we saw during the shell programming courses.



Formated Output - printf

■ printf takes a variable number of arguments, the first 
being a format string.

■ The function returns the number of character it printed.
■ The format string contains the string to output with 

variable tags. 
 For example : printf(“The temperature is %d. \n”, temperature);
 Variable tags are denoted by a percent sign % and a code.
 In this case, %d is use to indicate an integer.
 The second argument will replace the first tag.
 If a second tag was used, it would be replaced by the third 

argument.
 The string is terminated by \n. This is a newline character.



Printf Conversion

■ %d or %i : signed integer 
■ %x : unsigned hexadecimal integer
■ %u : unsigned decimal integer
■ %c : unsigned char
■ %s : char* (string)
■ %f : float or double of the form [-]mmm.ddd
■ %m.df : float or double of the form [-]mmm.ddd where m 

and d specifies the maximum number of digits.
■ %E : double of the form [-]m.dddExx



Formated Input - Scanf

■ Scanf is printf's analog, providing functionality to read 
formated input.

■ The format string uses the same convention as printf.
■ One important difference is that scanf expects pointers 

as the arguments.
■ The pointer should indicate where the input should be 

stored.
■ Scanf will read from STDIN until it matches every token 

in the format string, or until it hits an error (or an incorrect 
conversion).

■ Scanf will return the number of characters read.



Dangers of Scanf

■ Scanf is a tricky function to use because it assumes the 
input matches the format string.

■ For example, then using scanf with the %s, you must 
assume that the string will fit inside the supplied 
character array.
 That is not always the case.
 Vulnerable to buffer overflow.

■ You can control the maximum number of character 
scanned using the %ns option.
 For example, %40s will only read the first 40 characters.



Controlled Input

■ Most veteran C programmer suggest the use of fgets to 
read in input.
char *fgets(char *s, int size, FILE *stream);

■ This function allows a programmer to read in a string and 
a controlled number of characters (or until it hits a 
newline or EOF).

■ The programmer must then manually parse the string 
himself.



Character input

■ The simplest input function is getchar.
int getchar(void)

■ It retrieves one character from STDIN.



Flushing StdIn

■ Like all files, StdIn is a buffer.
■ Functions like scanf, getchar and fgets will only read 

parts of a buffer.
■ If you want to discard the content of a buffer, you'll need 

to do so manually.
 Never use fflush() on an input stream.

void flushStdIn() {

  char c = 'a';

  while(c != '\n') {
    c = getchar();
  }
}



Sequential vs Random Access

■ Normally, access to a file is sequential.
 You open a file and you read from start to finish, in that order.

■ However, you might also need to jump around in the file.
 fseek allows you to change the position of the file position 

indicator.
 ftell returns the position of the file position indicator.
 rewind sets the file position indicator at the beginning of the 

file.



Opening a file

■ You can open a file using the fopen function.
■ FILE* fopen(const char* file, const char* mode)
■ Once a file is opened, it returns a FILE pointer. That 

pointer can then be used to modify the file.
 The file pointer points to a structure that contains information 

about the file, such as
➔ Location of buffer
➔ Current character position in buffer
➔ Open mode
➔ Any errors that might have occured.

■ The “mode” indicates what type of access is required.
■ In case of error, fopen returns null. 



Open mode

■ The mode is specified by a single character:
 r : opens a file in read mode
 w : opens a file in write mode
 a : opens a file in append mode

■ If a non-existing file is opened in write or append mode, 
it is first created.

■ If an existing file is opened in write mode, it's original 
content is discard.

■ To open a file in binary mode, a “b” should be appended 
to the mode string.



Character IO

■ The simplest file IO functions are getc and putc.
 int getc(FILE *fp)
 int putc(int c, FILE *fp)

■ The getc function reads a single character from the 
supplied file pointer.

■ The putc function writes a single character to the 
supplied file pointer.



Formated File IO

■ The fprintf and fscanf functions correspond to their printf 
and scanf counterpart.
 int fscanf(FILE *fp, char *format, ...)
 Int fprintf(FILE *fp, char *format, ...)

■ The only difference is that fscanf and fprintf explicitly 
require a file pointer as their first parameter.
 printf assumes output should go to stdout
 scanf assumes that input should come stdin



Line IO

■ The fgets and fputs functions can be used to manipulate 
lines of IO.
 char* fgets(char *line, int maxline, FILE *fp)
 Int fputs(char *line, file *fp);

■ A line of text is defined as a character of array termined 
with either an end-of-line character or a null character,

■ The fgets function reads the next line and stores in the 
provided character array.
 Note that the function does not create a character array.
 Before calling this function, you should have allocated a 

memory space large enough to review the input.
 At most maxline characters are read.

■ The fputs function writes a new string into the specified 
file.



Closing a file

■ Once you've finished with a file, you should use the 
fclose function to close the file.

int fclose(FILE *fp);
■ This will write any data that might have remained in the 

buffer.
■ This is particularly a good idea if you open and close 

files often in your application.
 A process can only open a specific number of files at a time.



String IO

int sprintf(char *str, const char *format, ...)
int sscanf(const char *str, const char *format, ...);

■ You can also use the printf and scanf functions on 
strings.

■ With sprintf, you can concatenate multiple values to 
create a new string.
 You can use snprintf if you want to control the maximum size of 

the output string.
■ With sscanf, you can parse an existing string.

 Note that sscanf has the same dangers of scanf and fscanf.



Data Storage Strategies

■ When storing data, the first step is to determine if 
storage should be in text or binary.
 Text : ideal if the content if made out of only ASCII characters.
 Binary : for everything else.

■ Once you have decided on the encoding, you need to 
decide on the storage format :
 Text : Comma Delimited, XML, etc
 Binary : Buffers with length, etc

■ Each of them has strengths and weaknesses.



Comma Delimited

■ In this format, separate records are stored on different 
lines.

■ The fields of the record are separated by comma's (or 
semi-colons, or whatever control character you choose).

■ Great care must be taken to make sure that the control 
character is not found in the data set.

Lotr;Tolkien;300
Harry Potter;JK Rowing;240



XML

■ XML (eXtensible Markup Language) is a W3C-
recommended general-purpose markup language that 
supports a wide variety of applications. 

■ It's a hierarchical storage format that is easy to parse 
and where the content can easily be transformed into a 
tree.

<book>
<title>Lotr</title>
<author>Tolkien</author>
<page>300</page>

</book>



Happy Halloween


