
File I/O

Comp-206 : Introduction to Software Systems
Lecture 16

Alexandre Denault
Computer Science
McGill University

Fall 2006

Take Note

Class on Thursday, November 9th, is canceled
Assignment 2 is due Tuesday, November 14th.
The paper document for Assignment 2 is due

Wednesday, November 15th.

Files in Unix

■ As previously mentioned, in Unix, everything is a file.
 STDIN, STDOUT and STDERR behave like files.
 Peripherals connected to the computer are also behave like

files.
 Network communication sockets behave like files.

■ As such, if you know how to manipulate files, you can
manipulate STDIO, peripherals and sockets.

Types of files

■ Text or ASCII : These files are used to store text using
the ASCII character encoding. Each byte of the file
represents a character.
 Special control characters are used to represent an end of line

(015) or an end of file (003).
 There is a total of 256 different characters in an Ascii file.

■ Binary : All files that use an encoding scheme other that
ASCII are considered binary. The include image files,
music files and PDF documents.
 Each byte has a special meaning for that file.
 The meaning of that byte is defined by the encoding format.

stdin, stdout, strerr

■ When a C application is started, three files are opened
by the operating systems.
 stdin, stdout and stderr

■ The corresponding file pointers are declare in <stdio.h>.
■ You can normally use stdin to read from the keyboard

and stdout to print to the console.
■ However, stdin and stdout can be redirected to/from

files, as we saw during the shell programming courses.

Formated Output - printf

■ printf takes a variable number of arguments, the first
being a format string.

■ The function returns the number of character it printed.
■ The format string contains the string to output with

variable tags.
 For example : printf(“The temperature is %d. \n”, temperature);
 Variable tags are denoted by a percent sign % and a code.
 In this case, %d is use to indicate an integer.
 The second argument will replace the first tag.
 If a second tag was used, it would be replaced by the third

argument.
 The string is terminated by \n. This is a newline character.

Printf Conversion

■ %d or %i : signed integer
■ %x : unsigned hexadecimal integer
■ %u : unsigned decimal integer
■ %c : unsigned char
■ %s : char* (string)
■ %f : float or double of the form [-]mmm.ddd
■ %m.df : float or double of the form [-]mmm.ddd where m

and d specifies the maximum number of digits.
■ %E : double of the form [-]m.dddExx

Formated Input - Scanf

■ Scanf is printf's analog, providing functionality to read
formated input.

■ The format string uses the same convention as printf.
■ One important difference is that scanf expects pointers

as the arguments.
■ The pointer should indicate where the input should be

stored.
■ Scanf will read from STDIN until it matches every token

in the format string, or until it hits an error (or an incorrect
conversion).

■ Scanf will return the number of characters read.

Dangers of Scanf

■ Scanf is a tricky function to use because it assumes the
input matches the format string.

■ For example, then using scanf with the %s, you must
assume that the string will fit inside the supplied
character array.
 That is not always the case.
 Vulnerable to buffer overflow.

■ You can control the maximum number of character
scanned using the %ns option.
 For example, %40s will only read the first 40 characters.

Controlled Input

■ Most veteran C programmer suggest the use of fgets to
read in input.
char *fgets(char *s, int size, FILE *stream);

■ This function allows a programmer to read in a string and
a controlled number of characters (or until it hits a
newline or EOF).

■ The programmer must then manually parse the string
himself.

Character input

■ The simplest input function is getchar.
int getchar(void)

■ It retrieves one character from STDIN.

Flushing StdIn

■ Like all files, StdIn is a buffer.
■ Functions like scanf, getchar and fgets will only read

parts of a buffer.
■ If you want to discard the content of a buffer, you'll need

to do so manually.
 Never use fflush() on an input stream.

void flushStdIn() {

 char c = 'a';

 while(c != '\n') {
 c = getchar();
 }
}

Sequential vs Random Access

■ Normally, access to a file is sequential.
 You open a file and you read from start to finish, in that order.

■ However, you might also need to jump around in the file.
 fseek allows you to change the position of the file position

indicator.
 ftell returns the position of the file position indicator.
 rewind sets the file position indicator at the beginning of the

file.

Opening a file

■ You can open a file using the fopen function.
■ FILE* fopen(const char* file, const char* mode)
■ Once a file is opened, it returns a FILE pointer. That

pointer can then be used to modify the file.
 The file pointer points to a structure that contains information

about the file, such as
➔ Location of buffer
➔ Current character position in buffer
➔ Open mode
➔ Any errors that might have occured.

■ The “mode” indicates what type of access is required.
■ In case of error, fopen returns null.

Open mode

■ The mode is specified by a single character:
 r : opens a file in read mode
 w : opens a file in write mode
 a : opens a file in append mode

■ If a non-existing file is opened in write or append mode,
it is first created.

■ If an existing file is opened in write mode, it's original
content is discard.

■ To open a file in binary mode, a “b” should be appended
to the mode string.

Character IO

■ The simplest file IO functions are getc and putc.
 int getc(FILE *fp)
 int putc(int c, FILE *fp)

■ The getc function reads a single character from the
supplied file pointer.

■ The putc function writes a single character to the
supplied file pointer.

Formated File IO

■ The fprintf and fscanf functions correspond to their printf
and scanf counterpart.
 int fscanf(FILE *fp, char *format, ...)
 Int fprintf(FILE *fp, char *format, ...)

■ The only difference is that fscanf and fprintf explicitly
require a file pointer as their first parameter.
 printf assumes output should go to stdout
 scanf assumes that input should come stdin

Line IO

■ The fgets and fputs functions can be used to manipulate
lines of IO.
 char* fgets(char *line, int maxline, FILE *fp)
 Int fputs(char *line, file *fp);

■ A line of text is defined as a character of array termined
with either an end-of-line character or a null character,

■ The fgets function reads the next line and stores in the
provided character array.
 Note that the function does not create a character array.
 Before calling this function, you should have allocated a

memory space large enough to review the input.
 At most maxline characters are read.

■ The fputs function writes a new string into the specified
file.

Closing a file

■ Once you've finished with a file, you should use the
fclose function to close the file.

int fclose(FILE *fp);
■ This will write any data that might have remained in the

buffer.
■ This is particularly a good idea if you open and close

files often in your application.
 A process can only open a specific number of files at a time.

String IO

int sprintf(char *str, const char *format, ...)
int sscanf(const char *str, const char *format, ...);

■ You can also use the printf and scanf functions on
strings.

■ With sprintf, you can concatenate multiple values to
create a new string.
 You can use snprintf if you want to control the maximum size of

the output string.
■ With sscanf, you can parse an existing string.

 Note that sscanf has the same dangers of scanf and fscanf.

Data Storage Strategies

■ When storing data, the first step is to determine if
storage should be in text or binary.
 Text : ideal if the content if made out of only ASCII characters.
 Binary : for everything else.

■ Once you have decided on the encoding, you need to
decide on the storage format :
 Text : Comma Delimited, XML, etc
 Binary : Buffers with length, etc

■ Each of them has strengths and weaknesses.

Comma Delimited

■ In this format, separate records are stored on different
lines.

■ The fields of the record are separated by comma's (or
semi-colons, or whatever control character you choose).

■ Great care must be taken to make sure that the control
character is not found in the data set.

Lotr;Tolkien;300
Harry Potter;JK Rowing;240

XML

■ XML (eXtensible Markup Language) is a W3C-
recommended general-purpose markup language that
supports a wide variety of applications.

■ It's a hierarchical storage format that is easy to parse
and where the content can easily be transformed into a
tree.

<book>
<title>Lotr</title>
<author>Tolkien</author>
<page>300</page>

</book>

Happy Halloween

