
Basic C Syntax

Comp-206 : Introduction to Software Systems
Lecture 10

Alexandre Denault
Computer Science
McGill University

Fall 2006

Next Week

■ I'm away for the week.
 I'll still check my mails though.

■ No class Tuesday, since it counts as a Monday.
■ Thursday class will be give by Jun, one of the T.A

Quiz
■ In addition to a process id, what is allocated to a process

when it is created?
■ What makes a good password?
■ What are the three file permission levels?
■ Give two commands that allows you to scroll, page-by-

page, through the content of a file.
■ What command can be used to see the list of currently

running processes?
■ What is the different between a command-line text editor

and GUI text editor?
■ What positional variable contains the number of

arguments on the command line?
■ Give a test command that will determine if "test.sh" is

executable.
■ Name two differences between Java and C.

Structure of a C program

■ A C program has the following components (usually
found in this order) :
 Preprocessor Commands
 Type Definitions
 Function Prototypes
 Variables
 Functions

■ Every C program must have a main function.

Compile Time vs Run Time

This is when the compiler is
working on your program.

■ The compiler knows the
name and type of every
variable.

■ Errors are explained, and
usually a suggestion
about which line has an
error is given.

This is when your
application is running.

■ The operating system has
no idea what your
variable are, or what type
they have.

■ The operating system has
no idea what lines of
codes are, or what errors
can occur.

Importance of clean coding

■ When programming in C, a clean coding style is
mandatory.

■ Compile time errors are cryptic at best. Don't expect too
much help from the compiler.

■ Runtime errors are worst. Since a compiled executable
has very little debugging information, the errors are even
more cryptic.
 Core Dump
 Segmentation Fault

Variable Declaration

■ Variables are usually declared at the top of files and
functions.

#include <stdio.h>

int myglobalinteger;

int main() {

int mylocalinteger;

// do something
}

Assigning a value

■ Just like Java, you can assign a value to a variable using
the equal sign.

■ In C, you can chain assignments.
■ Unlike Java, variable are NOT defaulted to 0;

int main() {

int a,b,c,d;

a = 10;
b = c = 5;
printf(“a:%d, b:%d, c:%d, d:%d”, a, b, c, d);

}

typedef

■ The typedef command allows for the creation of custom
types.

■ This will become useful latter in the course.

typedef scalefactor int;

int main() {

scalefactor a;

a = 10;
printf(“The scale factor is:%d”, a);

}

Constants

■ In C, a variable can be declared as constant.
■ The value of a constant is initialized when the variable is

declared. That value cannot be changed.
■ An optimizing compiler can use the constant declaration

to simplify and optimize the code.

int const a = 1;
const int a = 2;

Arithmetic Operations

■ C provides the basic arithmetic operations : + - * /
■ For efficiency purposes, it also provides an increment

and decrement operator : ++ and --
■ The modulus (%) operator is also provided.
■ Note that / operation for float and integer is very

different. Unless both operands are float, the division will
be integer based.

float a, b;
a = 3.0 / 2; // a = 1.0
b = 3.0 / 2.0; // b = 1.5

Comparison Operators

■ C provides the following comparison operators:
 == : equality
 != : not equal
 < : smaller than
 > : greater than
 <= : smaller or equal than
 >= : greater or equal than

■ Please note that testing for equality is done using the ==
operator, which is not the same as =

if (a == 1) { // Good test
if (a = 1) { // Assigns the value of 1 to a

 // and will always test as true

Logical Operators

■ C provides the following logical operator:
 && : AND
 || : OR
 ! : NOT

■ These can be used with the comparison operators:

if ((a == 5) || (a == 6)) // a = 5 or 6
if ((a == 3) && (b == 4)) // a = 3 and b = 4
if (!(a == 5)) // a is not 5
if (a != 5) // a is not 5

If statement

■ If statements in C are identical to if statements in Java.

if (expression) {
statement;

} else if (expression) {
statement;

} else {
statement;

}

■ If you omit the bracket, then you are limited to one
statement in your if block.

■ Given the complexity of C debugging, ALWAYS put your
brackets.

? operator

■ The ? operator is a designed to replace small if
statements. Its syntax is as follows:
 (expression) ? (statement if true) : (statement if false)

■ The following example calculates the absolute value of
an integer.

int a, aabs;

a = some random int value;
aabs = (a > 0) ? a : -a;

Switch statement

■ A switch statement allows testing of a variable under
multiple condition:

switch(variable) {
 case constant1:
 statements;
 break;
 case constant2:
 case constant3:
 statements;
 break;
 default:
 statements;
}

Break keyword

■ Note that the break keyword is necessary. Otherwise,
the evaluation will fall through the next block.

switch(variable) {
 case constant1:
 statements;
 case constant2:
 case constant3:
 statements;
 break;
 default:
 statements;
}

For loop

■ The for loop in C is identical to its Java counterpart.

for (expression1; expression2; expression3) {
statements;

}

■ It's components are as follows:
 Expression 1 is used for setting the initial value of the loop.
 Expression 2 is the condition that is tested at each iteration. If

the expression is evaluated as false, the loop terminates.
 Expression 3 is executed as every iteration. It is usually used

to increment a counter.

While loop

■ The while loop is very similar to a for loop.
while (expression) {

statements;
}

■ The statements in the loop will be executed until the
expression is evaluated as false (as equal to zero) .

■ This makes the following while loop legal:
int i = 10;
while (i--) {

statements;
}

Every for loop is a while loop

■ The following for loop ...

for (expression1; expression2; expression3) {
statements;

}

■ ... could be transformed as the following while loop.

expression1;
while (expression2) {

statements;
expression3;

}

Every while loop is a for loop

■ The following for loop ...

while (expression) {
statements;

}

■ ... could be transformed as the following while loop.

for (;expression;) {
statements;

}

Break and Continue keywords

■ The control flow of a loop can be altered using the break
or continue keyword.
 continue will skip to the end of the current iteration to the next

iteration.
 break will exit the loop (just as it exits a switch statement).

■ For example, the following loop will print out the modulus
of 3 smaller than 10.

i = 0;
while(1==1) {
 if ((i%3)!=0) continue;

if ((i >= 10)==0) break;
printf(“%d\n”, i);

}

Arrays

■ In C, arrays are blocks of memory.
■ They can be single or multi dimensional.
■ Arrays will get much more powerful when we start

working with pointers.
■ Declaring an array is pretty simple:

int listofint[50];
■ Using an array is also straight forward

listofint[0] = 10;
■ C does NOT do bounding checks, so be careful.
■ Also not that the content of the array is initialized with

whatever is lying around in memory.

Array of Characters

■ In C, strings are null terminated arrays of characters.
■ However, C has no built-in facilities to deal with strings.
■ The following assignment would be illegal;

char[50] myString;
myString = “Hello World!”;

■ C has special functions to deal with Strings. We will take
a look at them in a latter lecture.

H e l l o W o r l d ! \0
72 101 108 108 111 32 87 111 114 108 100 33 0 33 66

Functions

■ As previously mentioned, functions in C are similar to
their Java counterpart.

■ The following example function adds two integers
together:

int add (int a, int b) {
return a + b;

}

■ Each function name must be unique. C does not support
function overloading.

Function Prototyping

■ C uses a single pass compiler. This means that when
compiling, each file is only read once.

■ When checking the code for correctness, the compiler
goes from top-to-bottom.

■ If a function uses a function that was defined after it, the
compiler will report an error.

■ Function prototyping allows us to declare a future
function, without having to give the code for it.

■ It is considered good practice to declare all your
functions (except for main) at the top of your file (or the
header if you are using one).

Incorrect code

main() {
a();
b();

}

void a() {
//do something

}

void b() {
//do something

}

Better code

void a() {
//do something

}

void b() {
//do something

}

main() {
a();
b();

}

Even better code

void a();
void b();

main() {
a();
b();

}

void a() {
//do something

}

void b() {
//do something

}

Function prototype

Popular Function

■ printf is the default command to print out data to the
command line (STDOUT).

■ It is a very popular command, since it exists in many
programming language, including Java.

■ It is, in many ways, similar to System.out.print.
■ However, since C does not use type information at

runtime, it is a little trickier to use.

printf

■ printf takes a variable number of arguments, the first
being a format string.

■ The format string contains the string to output with
variable tags.
 For example : printf(“The temperature is %d. \n”, temperature);
 Variable tags are denoted by a percent sign % and a code.
 In this case, %d is use to indicate an integer.
 The second argument will replace the first tag.
 If a second tag was used, it would be replaced by the third

argument.
 The string is terminated by \n. This is a newline character.

Printf Conversion

■ %d or %i : signed integer
■ %x : unsigned hexadecimal integer
■ %u : unsigned decimal integer
■ %c : unsigned char
■ %s : char* (string)
■ %f : float or double of the form [-]mmm.ddd
■ %m.df : float or double of the form [-]mmm.ddd where m

and d specifies the maximum number of digits.
■ %E : double of the form [-]m.dddExx

getchar

■ The simplest input function is getchar.
int getchar(void)

■ It retrieves one character from STDIN.
■ You can combine redirection and getchar to create a

simple program that reads from a file.
readingapp <text.txt

■ The output equivalent function is putchar.
int putchar(int)

■ It displays one character to STDOUT
■ Again, you can combine redirection and putchar to

create a simple program that writes a file.
writingapp >output.txt

