
MINUETO, AN UNDERGRADUATE TEACHING

DEVELOPMENT FRAMEWORK

by

Alexandre Denault

School of Computer Science

McGill University, Montreal

April 2005

A thesis submitted to McGill University

in partial fulfillment of the requirements of the degree of

Master of Science

Copyright c© Alexandre Denault, 2005. All right reserved.

i

Abstract

In the last decade, the video game industry has shown unparalleled growth, both in

revenue and in development complexity. Modern video games are built using powerful

game development tools. However, given their complexity and scope, these tools are

ill-suited for the undergraduate academic environment.

Minueto is a platform independent game development framework specifically de-

signed for undergraduate students. Originally developed to help students of the course

COMP-361 for their game programming project, Minueto offers a simple object-

oriented API that is ideal for any 2D game development. Minueto’s simple design

allows students to quickly learn the framework and avoid the overhead typically as-

sociated with graphic programming. Extra effort was spent writing multiple types

of documentation, each of them corresponding to different learning techniques. Min-

ueto was first implemented in Java and used by the students of the Winter 2005

term. There was an impressive increase in the overall quality of the 2005 projects

if compared to the 2004 projects. A significant decrease in the number of graphic

programming complaints from the students was also noticed. This indicates that

Minueto successfully reduced the graphic programming burden from the students,

and allowed them to focus on the content of the game.

ii

Résumé

Dans la dernière décennie, l’industrie du jeu vidéo a subit une croissance inégale,

autant pour ses revenus que pour la complexité de ses jeux. Les jeux vidéo modernes

sont bâtis avec des puissant outils de développement. Cependant, étant donné leurs

complexités et leurs portées , ces outils sont mal adaptés pour les étudiants du premier

cycle universitaire.

Minueto est un cadre de développement de jeu pour divers plateforme, spécifiquement

conçu pour les étudiants du premier cycle universitaire. Quoique Minueto a été origi-

nalement conçu pour aider les étudiants du cour COMP-361 dans leur projet de pro-

grammation, la simple architecture objet-orientée de Minueto est idéale pour tout pro-

jet de développement de jeu 2D. La structure simple de Minueto permet aux étudiants

de rapidement apprendre à utiliser le cadre et réduire le fardeau de la programmation

d’une interface graphique. Beaucoup d’effort a été investi dans l’écriture de plusieurs

types de documentation, chaque type correspondant à une technique d’apprentissage

différente. Minueto a été implémenté en Java et utilisé pour la première fois par

les étudiants de la session d’hiver 2005. Quand l’on compare avec les projets de

l’année précédente, une augmentation impressionnante dans la qualité des projets

de la session 2005 a été remarquée. Une diminution signifiante des plaintes reliées au

développement d’une interface graphique a également été constatée. Ceci indique que

Minueto à réussi à réduire le fardeau des étudiants pour la programmation de leur

interface graphique, tout en leur permettant de se concentrer sur le contenu du jeu.

iii

Acknowledgments

I would sincerely like to thank my supervisor, Prof. Jörg Kienzle, for his guidance,

assistance and support. I am extremely graceful for the freedom and flexibility I had

in exploring the different possibilities for Minueto. I also truly appreciate his patience,

given the strong opinions I sometimes have.

I would also like to thank Marc Lanctot for being my first official tester. His

comments were invaluable in refining and tuning Minueto. As well, I would like

to thank the Winter 2005 COMP-361 class for being my first official users. I was

truly touched by the high number of students that chose to use Minueto. More

specifically, I would like to thank Ziad Abou-Saab, Benjamen Azan, Jeremy Claude,

Daniel Crittenden, Michel A. Hawker, Adam Hooper, Tolga Kart, Jean-Sébastien

Légaré, Vicent Leung, Denis Lebel, David Ly-Gagnon, Seth Marinello, Frédéric Menu,

Marc Ovidiu, Will Stevens and Razvan Taranu for providing me valuable feedback

and helping me improve the framework.

I’d like to thank the Java Game Development Community, especially the talented

programmers that donate their valuable time to answering questions on the Java

Game forums. Their help was critical in understanding the nuance of Java Game

development.

Finally I’d like to thank my parents, brother, family, and the rest of my friends.

Their patience with me was inspiring, as I spent long hours working on Minueto.

Their encouragement was a critical component of this project, and for this, I thank

them.

iv

Contents

Abstract ii

Résumé iii

Acknowledgments iv

Contents v

List of Figures xi

List of Tables xii

1 Introduction 1

2 Fundamentals of Game Programming 3

2.1 Game Programming Concepts . 3

2.1.1 Frame Rate . 3

2.1.2 Double Buffering . 4

2.1.3 Game Loop . 5

2.2 Game Design Concepts . 7

2.2.1 Dimensionality of Games . 7

2.2.2 Single vs. Multiplayer . 8

2.2.3 Real Time vs. Turn Based . 10

v

I Framework Rationale 11

3 Comp 361 : System Development Project 12

3.1 Course Description . 12

3.2 Course Goals . 13

3.3 Previous Framework . 14

3.4 Student Projects and Feedback . 15

4 Improving the Course Infrastructure 18

4.1 Defining the Goals of the Infrastructure 18

4.2 Current Game SDKs on the Market 20

4.2.1 DirectX . 20

4.2.2 SDL : Simple Media Layer . 21

4.2.3 OpenGL . 21

4.2.4 Java . 21

4.2.5 Summary of Evaluation . 22

II Minueto 24

5 A Simple Object-Oriented Framework 25

5.1 Architecture . 25

5.2 2D Graphics Engine . 26

5.2.1 The Window . 26

5.2.2 The Images . 26

5.2.3 Abstraction Classes . 28

5.2.4 Drawing . 28

5.3 Keyboard / Mouse Listener . 30

5.3.1 Traditional solutions . 30

5.3.2 Queuing System . 31

5.3.3 Events From Expansion Modules 33

5.4 Possible Expansion Modules . 33

vi

5.4.1 MinuetoSound . 33

5.4.2 MinuetoNetworkMessaging . 34

5.4.3 MinuetoNetworkSync . 34

5.4.4 MinuetoXML . 35

5.4.5 MinuetoTileMap . 36

5.4.6 MinuetoUI . 38

6 An implementation in Java 39

6.1 Why Java? . 39

6.2 Performance Analysis . 40

6.2.1 Benchmarks . 40

6.2.2 Benchmark Results . 41

6.2.3 Other Performance Analysis 43

6.3 Programming Java Graphics . 45

6.3.1 Types of Images . 45

6.3.2 Double Buffer Strategy . 46

6.4 Documentation Strategy . 47

6.4.1 Tutorials . 47

6.4.2 Examples . 48

6.4.3 Specifications . 48

6.5 Current Limitation . 49

6.5.1 Single Window Restriction . 49

6.5.2 Apple JVM . 50

6.5.3 Keyboard Input on Linux . 51

6.5.4 Fullscreen Mode Under Linux 51

6.6 Programming Practices . 52

6.6.1 Coding Standards . 52

6.6.2 Automated Build System . 52

6.6.3 Regression Testing . 53

6.6.4 Source Control . 53

6.6.5 New Releases . 53

vii

6.7 Additional Benchmarks . 54

6.7.1 Goals and Methodology . 54

6.7.2 Analysis . 55

III Case Study: Winter 2005 59

7 Student Evaluation 60

7.1 Student’s Platform Choices . 60

7.2 Student’s Improvements To Minueto 61

7.2.1 Alpha Channels . 62

7.2.2 Swing Integration . 63

7.2.3 Active Queue . 63

7.2.4 Keyboard Handler . 64

7.3 Observation of Student Progression 65

8 Learning from 2004 and 2005 69

8.1 General Conclusions . 69

8.2 Impact Analyst . 69

8.3 Course Improvements . 71

8.3.1 User Interface Design . 71

8.3.2 Usability Testing . 72

8.4 Minueto’s Evolution . 73

8.4.1 Change Policies for the Core Component 73

8.4.2 The Role of Expansion Modules 74

8.4.3 The Next Minueto . 75

8.5 Looking to the Future . 75

Appendices

A Minueto SDK Readme 76

A.1 Minueto Readme . 76

viii

A.1.1 System Requirement . 77

A.1.2 Installation . 77

A.1.3 Samples . 78

A.1.4 Documentation . 78

A.1.5 Compiling . 78

A.1.6 Contact . 79

B Minueto Code Samples 80

B.1 CircleDemo . 80

B.2 CropDemo . 80

B.3 FramerateDemo . 80

B.4 HandlerDemo . 81

B.5 HandlerDemo2 . 81

B.6 HandlerDemo3 . 81

B.7 Helloworld . 81

B.8 ImageDemo . 81

B.9 LineBenchmark . 82

B.10 LineDemo . 82

B.11 LoadingFileDemo . 82

B.12 RectangleDemo . 82

B.13 RotateDemo . 82

B.14 RotateDemo2 . 82

B.15 RotateDemo3 . 83

B.16 ScaleDemo . 83

B.17 ScaleFlipDemo . 83

B.18 TextDemo . 83

B.19 TextDemo2 . 83

B.20 TriangleRover . 83

B.21 TriangleRover2 . 84

ix

C Minueto Tutorials 85

C.1 How do I run the samples? . 85

C.2 How do I compile and run an application with Minueto? 85

C.3 How do I create a game Window? . 86

C.4 How do I load and draw an Image? 86

C.5 How do I draw a line? . 86

C.6 How do I draw a rectangle or a circle? 86

C.7 How do I write text on an image or the screen? 86

C.8 How do I get input from the keyboard? 87

C.9 How do I get input from the mouse? 87

C.10 How do I measure time using Minueto? 87

C.11 How do I scale/rotate an image? . 87

D Glossary 88

Bibliography 91

x

List of Figures

2.1 Content of buffers in a double buffering strategy. 5

2.2 Example of a simple game loop. 6

2.3 Example of a dual threaded game loop. 6

2.4 Pong features one degree of player’s motion, two degrees of world’s

motion and zero degrees of viewer’s motion. Image Source: Wikipedia 9

3.1 BattleShip Framework provided to Winter 2003 COMP–361 students. 15

3.2 Naval Battle, as implemented by Team 01 using the provided GUI . . 16

5.1 UML diagram of the 2D graphic engine component (part 1) 27

5.2 UML diagram of the 2D graphic engine component (part 2) 29

5.3 UML diagram of the input component 32

5.4 Example of a game map stored as a XML file. 36

5.5 Mappy Win32, a tile map editor. 37

6.1 The first benchmark, BlackWizardGrass 41

6.2 The second benchmark, TownMap . 42

6.3 Frame rate achieved while running BlackWizardGrass demo. 43

6.4 Frame rate achieved while running TownMap demo. 44

6.5 Test Implementation of Strategic Conquest 45

7.1 Strategic Conquest, team Purple Monkey Screwdrivers 65

7.2 Strategic Conquest, team Golden Balaika Mariachis 66

7.3 Strategic Conquest, team Muff Busters 67

xi

List of Tables

3.1 Programming Languages and Software Development Kits used by stu-

dents during the Winter 2004 term. 17

4.1 Student feedback on most difficult task during the Winter 2004 project 18

4.2 Evaluation summary of the various game development kits available

on the market . 22

6.1 Frame rate (in frames per second) achieved while running BlackWiz-

ardGrass demo and TownMap demo in windowed mode (continued on

next table). 55

6.2 Frame rate (in frames per second) achieved while running BlackWiz-

ardGrass demo and TownMap demo in windowed mode. 56

6.3 Frame rate (in frames per second) achieved while running BlackWiz-

ardGrass demo and TownMap demo in fullscreen mode. 57

7.1 Programming Languages and Software Development Kits used by stu-

dent during the Winter 2004 & 2005 term. 61

8.1 Student feedback on most difficult task during the Winter 2005 project 70

xii

xiii

Chapter 1

Introduction

What do academia and video games have in common? Twenty years ago, the

answer to this question would have been very little. Video games were simple and

could be developed by a small team of programmers. Today, video games represent a

multi-billion dollars industry. Consumer expectations are high and developers must

reinvent themselves with each new game. The evolution of the video game industry

has resulted in numerous innovation in the field of computer science, most notably in

the fields of computer graphics and computer audio.

Electronic Arts, one of the largest game developers in North America, hires over

1,000 new employes each year, and it would like to fill 75% of these positions with uni-

versity graduates [Pau04]. Ubisoft will double its staff at its Montreal studio, adding

1,000 jobs by 2010 [Moo05]. The video game industry is growing at a tremendous

rate and is looking to universities as research partners and recruiting centers.

The University of Alberta Games Group, in collaboration with Bioware, is re-

searching new intelligent path-finding techniques and scripting languages for com-

puter role-playing games [oAGG05]. Carnegie Mellon’s Entertainment Technology

Center is developing, jointly with the Walt Disney Imagineering VR Studio, Panda

3D, an open source game and simulation engine [ETC05]. The Institute for Creative

Technologies (part of the University of Southern California) is supplying cutting-edge

artificial intelligence capabilities to the award winning army simulation game Full

Spectrum Warrior [fCT05].

1

To contribute to the video game industry, a university needs specialized researchers

and graduate students with game programming knowledge and experience. Thus

the importance of introducing game programming concepts at the undergraduate

level. This represents a non-trivial tasks, since most game programming tools are

geared towards the industry. For undergraduate students to properly understand and

experience the game development cycle, universities need the proper teaching tools.

This thesis defines Minueto, a game development framework targeted for the com-

puter science undergraduate population. It allows students to rapidly develop non-

trivial games by simplifying several game-programming concerns such as graphics,

sound, networking and player input. Thus, professors can ask the students to imple-

ment a game-related project knowing that students can focus on the behavior of the

game.

The thesis is split into three main parts. Part 1 (chapter 3-4) explains the rational

behind this game development framework. Chapter 3 describes a course where such

a framework is needed and analyses the tools previously used in that course. Chapter

4 outlines the framework’s goal and describes some game development tools available

on the market. A review of common game programming and game design concepts

can also be found in the next chapter (chapter 2).

Part 2 (chapter 5-6) introduces Minueto’s architecture. Chapter 5 describes this

platform independant framework, defining both the core components and possible

expansion modules. The details of the Java implementation of the framework can

be found in Chapter 6. This includes a performance analysis of the Java2D engine

and the documentation/programming pratices used during the construction of the

framework.

Part 3 (chapter 7-8) relates how this framework was used in a class setting and

proposes possible evolutions for the framework. Chapter 7 focuses on the various

choices students made using this framework and compares their results to previous

classes. Chapter 8 concludes with various suggestion for improving both the course

and the framework.

2

Chapter 2

Fundamentals of Game Programming

This chapter reviews fundamental game programming and game design concepts,

focusing mostly on the vocabulary used in this thesis. Note that this review should not

be viewed as a complete definition of those concepts, but as a summary to establish

a common understanding with the reader.

2.1 Game Programming Concepts

Like many other professional disciplines, game programming uses a vocabulary that

is shared by many industries. However, terms used by various industries can often

have subtle differences.

The following section describes some key terms used by this document, focusing

on the game programming context for these terms.

2.1.1 Frame Rate

Animation in video games is achieved by the subsequent drawing of time-varying

images depicting motion in the game. Each of these image is called a frame and the

speed at which these images are drawn is known as the frame rate.

To achieve the illusion of motion, a minimum 16 of these frames must be drawn

every second. If a frame speed of less than 16 fps is used, our eyes will notice the

3

2.1. Game Programming Concepts

consecutive drawing of the different images. Perfectly smooth animations requires

a minimum frame rate of 30 fps. At this speed, the human eyes cannot notice the

sequential drawing of the different images.

Animations of less than 24 fps might be considered jerky and unrealistic. At this

speed, our eyes cannot see the individual images, but they notice that the animation

is missing some key frames. This phenomena is known as temporal aliasing and

mostly occurs when fast moving objects are drawn. This problem can be solved by

increasing the temporal resolution (increasing the number of frames per second) of

the animation.

The performance of a video game can be measured by the frame rate that can be

achieved with a given hardware configuration. It is the programmer’s responsibility

to assure that the video game runs at an acceptable frame rate on the minimum

required hardware. Although a higher frame rate is always desirable, the maximum

frame rate of a video game is limited by the monitor used to display that game.

The refresh rate of a monitor describes how often the image on the monitor is

drawn. A typical television screen will have a refresh rate of 60 Hz, thus the screen

is redrawn every 60 seconds. Computer screens are designed to support much higher

refresh rates, usually 70Hz to 90Hz. If a video games achieves a frame rate higher

than the refresh rate of the monitor, the viewer will not benefit from the additional

frames because the monitor is not fast enough to draw these additional frames.

2.1.2 Double Buffering

Modern computers (and game consoles) store the image currently displayed on the

monitor in video memory. Programmers can alter the displayed image by modifying

the content of the video memory. However, precautions must be taken to prevent

changes in the video memory while the monitor is drawing the current frame. Such

a situation would allow the viewer to see the different immediate states of the frame

as they are being drawn.

A simple solution to this problem is double-buffering in which an additionnal

buffer in memory is created [FvDFH97]. The first buffer contains the image currently

4

2.1. Game Programming Concepts

Time

Original
Buffer

Additional
Buffer

0

Frame 1

1

Frame 1

Frame 2

fast
copy

2

Frame 2

Frame 3

fast
copy

...

Figure 2.1: Content of buffers in a double buffering strategy.

displayed while the additional buffer is used to prepare the next frame (see figure

2.1). Given that the two buffers are independent, the next frame can be prepared

without altering the content of the screen.

When the next frame is ready to be displayed, the content of the additional buffer

is copied to the original buffer using a near-instantaneous copy function. Subse-

quently, the application uses the additional buffer to prepare the the next frame.

Other buffering techniques, such as triple-buffering, can also be used, but are

beyond the scope of this document.

2.1.3 Game Loop

The game loop contains the core implementation of a game. It consists of the three

following continuous tasks :

• The system monitors its inputs for changes.

• The system recomputes its state given the detected input.

• The system updates its outputs given the changes in state.

These task should be executed concurrently since they are independent. The state

of a game is continually changing, whether the user enters input or not. Furthermore,

5

2.1. Game Programming Concepts

Initialize
of game

Detect
user
input

Update
game
state

Draw
new
frame

End of
game

Is the game
finished?

Yes

No

Figure 2.2: Example of a simple game loop.

Initialize
of game

Detect
user
input

Update
game
state

Draw
new
frame

End of
game

Is the game
finished?

Yes

No

Is the game
finished?

Yes

No
First thread

Second thread

Figure 2.3: Example of a dual threaded game loop.

since the state is continuously updated, the system cannot wait for an exact state

to update its output. However, given that most gaming machine are single-processor

machines, a video game must create the illusion of these three tasks simultaneously

executing.

Game loops are usually single or dual threaded [DS03] (see figure 2.2, 2.3). If

the three tasks require very little time to complete, only a single threaded loop is

required. However, when recomputing the state requires a large amount of time, a

dual threaded strategy is preferable. Splitting the state computation and the output

rendering allows a game to compute its state without affecting the frame rate. In

other words, more time can be spent on game related computation (such as an A.I.

planning its next move) without reducing the number of updates to the monitor.

6

2.2. Game Design Concepts

Unfortunately, the dual threaded strategy introduces complexities since it requires

some synchronization mechnanism between the two threads. Even though the two

threads might be operating at the same speed, precautions must be taken so that

the display thread does not read the game state while the other thread is updating

it. Failure to do so could cause the display thread to draw an inconstant state of the

game.

2.2 Game Design Concepts

Most established industries, like finance, health or sports, have a vocabulary to call

their own. However, the field of video game design suffers from the lack of a common

vocabulary [Chu99], borrowing design methodologies mostly from the movie industry.

Unfortunately, these methodologies fail to address the interactive nature of video

games.

The following section describes some key terms specific to this interactive media.

2.2.1 Dimensionality of Games

Video games are commonly described as two-dimensional or three-dimensional. Two-

dimensional games allow the player to move on two axis (up/down and left/right)

while three-dimensional games favor movement on three axis. Though this notion

describes the degrees of freedom a player is given, it gives very little information on

the environment and how the player perceives it.

The dimensionality of games can be broken down into three categories: the di-

mensionality of a player’s motion, the dimensionality of the world’s motion and the

dimensionality of the viewer’s motion [Ruc03].

We have already covered the first notion of dimensionality while discussion the

degrees of freedom a player is given in a game. It is important to mention that some

games, such as Pong, only provide one degree of freedom (up/down) (see figure 2.4).

Other games provide partial degrees of freedom. For example, Tetris allows a player

to move their blocks left, right and down. Such a game is said to have 1.5 degrees of

7

2.2. Game Design Concepts

freedom. This notion of partial degrees of freedom can be found in all three types of

dimensionality.

The dimensionality of the world’s motion describes how the environment interacts

with the player. Our previous example, Pong, has two degrees of world freedom since

the ball is allowed to move on the X axis and the Y axis. If we consider a modern first-

person shooter such as Half-Life 2, the world’s motion has three degrees of freedom

since opponents can use changes in elevation against a player (e.g. jumping from a

building to surprise a player).

The dimensionality of the viewer’s motion describes how the viewpoint of a player

can change. Our classic example of Pong has zero degrees of viewer motion since the

game play area never scrolls. A traditional strategy game, such as Warcraft 2, where

a player can scroll the game map on the X and Y axis has two degrees of viewer

motion. If the player could freely zoom in/out of the map in the same strategy game,

then that game would have three degrees of viewer motion.

2.2.2 Single vs. Multiplayer

The scenario and technical challenges of designing a single or a multiplayer game are

very different. These issues must be taken into careful consideration, especially if a

game should support both single and multi player.

People play video games because of the stories they tell and the stories they build

playing them. In a single player game, the story gives the player goals and tasks.

Players interact with the story line in their unique fashion, thus creating their game

play experience. In a multiplayer game, the goals and tasks can also be defined by the

story, but they are heavily influenced by the various interactions between the players.

This is especially true with massively multiplayer online games (MMOG). Thus the

single player scenario and the multiplayer scenario for the same game should have

different goals.

Single and multiplayer games also have different technological focus. As previously

mentioned, single player games often have a more elaborate story line. As such, they

require special components to relate the story and allow the player to progress through

8

2.2. Game Design Concepts

Figure 2.4: Pong features one degree of player’s motion, two degrees of world’s motion

and zero degrees of viewer’s motion. Image Source: Wikipedia

it. An example of such a component would be a cinematic engine, which allows a

game to have cinematic scenes that relate the story. These story telling components

are often not needed in a multiplayer game.

In a multiplayer game, every player must have a consistent view of the game

state. Time delays in the communication between the player’s machines can make

this a very difficult challenge. Failure to properly update the global state can result in

paradoxical situation, such as two competitors believing they each won the same race.

Techniques, such as dead-reckoning [PW02], where missing information is estimated,

try to address this problem.

9

2.2. Game Design Concepts

2.2.3 Real Time vs. Turn Based

The concept of real time and turn based games can be better understood by looking

at the differences between the two: real time games exist in a continual continuum

of time as opposed to turn based games which exist in a discrete continuum of time.

This difference can be observed from the player’s point of view and the programmer’s

point of view.

From the player’s perspective, turn based games mostly focus on tactics while real

time games focus on strategy [Wal02]. In real time games, players have a tendency to

focus on short-term goals and winning battles. Turn based games allows players to

reflect on long term goals and focus on winning the war. The artificial intelligence in

turn based games offers a stronger opponent, mostly because more CPU cycles can

be spared to the computer opponents. In contrast, a player’s ability to successfully

complete a real-time game often relies on his reflexes and his ability to make quick

decisions.

From a programmer’s perspective, real time games are more difficult to develop

since every task must be completed under a time-constrained condition [DS03]. In

other words, player input must be processed and game state must be updated in a

timely fashion. This can be very difficult, especially in a multiplayer game where, in

addition to the tasks mentioned above, the game engine must maintain a synchro-

nized game state on all player machines. This requires a distributed environment

which can be updated and synchronized in continuous time. Turn based games are

much easier to develop since they remove the time-constrained condition and allow

the programmer to allocate the necessary CPU cycles to each task. Building a dis-

tributed environment that synchronizes itself across all nodes in discrete time is also

significantly easier.

10

Part I

Framework Rationale

Chapter 3

Comp 361 : System Development Project

3.1 Course Description

In Fall 2002, the School of Computer Science at McGill University introduced a

new Software Engineering program. This program, under the administration of the

Faculty of Science, offers a practical approach to learning Computer Science and

focuses on various software-related topics such as object-oriented software design,

software processes and programming techniques [oCS05]. To create this new software-

focused program, several new course were needed. Among them was COMP-361:

Systems Development Project.

The official course description can be found in the undergraduate course calendar

[ARA04].

Practical issues in systems programming including: inter-process commu-

nication, task scheduling, special purpose systems, multi-processor sys-

tems. Implementation of a large body of software to illustrate core con-

cepts and provide substantial hands-on experience.

Professor Jörg Kienzle was given the task of designing a course that would fit

these requirements. The obvious solution to this problem would have been to design

a course that requires students to design and implement components of an operating

12

3.2. Course Goals

system. Already having a background in game programming, Professor Kienzle how-

ever decided that a networked turn-based game project was an ideal topic for this

course. If properly designed, a game programming project would allow to evaluate

the students abilities to work on a large piece of software in groups, while at the

same time provide a challenge that might stimulate some students to go beyond the

minimum requirements.

3.2 Course Goals

The Systems Development Project course was introduced into the Software Engi-

neering program to give students the opportunity to work in teams on a large-scale

project early into their Bachelors degree. Here are some of the course goals that were

declared important early in the planning of the course.

• Students work in teams of three to four students, thus gaining some valuable

teamwork experience. They also learn how to use tools related to teamwork

such as a version control system.

• The requirements for the games will be incomplete. Thus, students learn how

to make design decision. Given that they implement the game they design, they

acquire valuable insight on how their design decisions affect their project.

• The game is networked based. This gives students an opportunity to work on a

project that requires interprocess communication and concurrent programming

skills.

• Students must use an object-oriented programming language. Although stu-

dents should have the freedom to choose which tools they can use to complete

the project, students should also get some experience in building large projects

using object-orientation.

Game programming projects can be very complicated and cover a broad range of

topics. Thus, we defined topics that should not be covered in the course:

13

3.3. Previous Framework

• Students should not have to learn about graphic programming issues (such as

transparency masks, color depth and palettes, etc).

• Students should not have to learn about audio programming. Audio is outside

the scope of this course will not be required for the project.

• The game should not be real-time. Building the state synchronization algorithm

needed for a real-time game is a difficult challenge and is best left to a distributed

computing course.

Given the course goals and the current game development tools on the market,

it was decided that some kind of game development framework would have to be

provided to the students. This framework would allow students to focus on the

course goals while hiding the complexities of game programming.

3.3 Previous Framework

The Systems Development Project course, COMP-361, was offered for the first time

in Winter 2004. Students were required to implement a turn-based strategy game,

Naval Battle. Unfortunately, there was not enough time to develop a proper game

programming framework for the start of the term. Instead, Sheriff Shaker developed

a game-specific graphical user interface (GUI) and students could program the game

behavior into that GUI, thus avoiding graphic programming issues.

The game-specific GUI provided a library and a template for students to make

their game. The library provided a complete set of API that would allow students

to draw the necessary elements of the game. Students could use methods such as

drawBattleShip or drawTorpedo to draw the various elements of the game. A layout

for the game grid and necessary buttons was also provided.

To implement the behavior of the game, students were provided with a template

file where they could add their implementation code. Students where also free to re-

implement the template file, as long as their new template had the required functions.

14

3.4. Student Projects and Feedback

Figure 3.1: BattleShip Framework provided to Winter 2003 COMP–361 students.

Unfortunately, given the tight time frame available to develop this GUI, very

little documentation was written on how to use the it. Although a tutorial was given

to teach students how to use templates, students had to study the source code to

understand how to properly use the GUI.

3.4 Student Projects and Feedback

In Winter 2004, the COMP-361 students were grouped into 10 teams of 4 students.

Although some students had an engineering background, most students were from

the faculty of science.

As previously mentioned, students were required to implement Naval Battle, a

BattleShip-like game 3.2. However, this game was far more complicated than the

traditional version of Battleship since it added the notion of radars, firing range,

15

3.4. Student Projects and Feedback

Figure 3.2: Naval Battle, as implemented by Team 01 using the provided GUI

islands and several new ship types. The game was turn based.

Students were given free choice in the technology they used for their project. Stu-

dents were also provided with the game-specific GUI described in the previous section.

This allowed students uncomfortable with graphic programming to avoid building a

GUI and focus on the game play instead. However, the variety of technologies used

by the students to complete the project was surprising (see table 3.1).

A quick analysis of the class demographics allowed us to conclude that students

with an engineering background favored C++ while students from the Faculty of Sci-

ence preferred to use Java. Although it might be argued that engineering students

prefer C++ because they are exposed to it early in their program, Computer En-

gineering and Software Engineering students take the same introduction classes as

Computer Science students. Further study is required to determine if the students’

16

3.4. Student Projects and Feedback

Programming Language Software Development Kits Number of teams

Java Swing 5

Java Naval Battle GUI 1

C++ DirectX 1

C++ DirectX (XBox) 1

C++ SDL 1

Python PyGame (SDL) 1

Table 3.1: Programming Languages and Software Development Kits used by students

during the Winter 2004 term.

choice is motivated by familiarity with the language or the performance difference

between C++ and Java.

It should be noted that only one team out of 10 chose to use the provided GUI.

Discussions with the students revealed that the GUI was not chosen for the following

reasons:

• Some students felt that the framework was too restrictive. By providing the

graphic interface for the game, students felt that the GUI lacked the flexibility

to allow them to customize features in the game.

• The GUI had very little documentation. Thus, students knew very little about

it and could not easily determine if it would fit their needs.

Netherless, more than half of the groups chose to do their project using Java.

Many of those groups were heavily influenced by the GUI and opted to recycle some

of its source code.

To summarize, the Winter 2004 term of COMP-361 made it clear that some

students do require a tool to help them complete the project. However, this tool

is not accepted accepted by the students if it does not provide them with adequate

flexibility and proper documentation. Students do also not hesitate to recycle existing

components from a tool.

17

Chapter 4

Improving the Course Infrastructure

One defining characteristic of the Systems Development Project course is that

students are allowed to choose the technology they use to complete their project.

Given that only 10% of the class chose to use the provided GUI, we can conclude

that it did not properly address the students’ needs. During final grading of the

project, students were asked what was the most difficult tasks of the project. The

results (see table 4.1) indicate that graphics programming and GUI design is one

of the most difficult tasks of the project, thus emphasizing the need for a proper

development framework.

Most difficult task Number of teams

Coding a large scale project 3

Properly designing and planning the project 3

Building the GUI and programming the graphics 4

Table 4.1: Student feedback on most difficult task during the Winter 2004 project

4.1 Defining the Goals of the Infrastructure

It was obvious that the students needed a flexible game programming framework,

rather than just a GUI catered towards a specific game. A careful review of the tools

18

4.1. Defining the Goals of the Infrastructure

provided by similar courses [Ruc03, SW04] and discussion with the students allowed

us to build a list of goals for such a new framework.

• The framework should not be game specific. A major drawback of the game-

specific GUI offered in Winter 2004 was the lack of freedom. Methods such as

drawMap and drawBattleShip were too high level and forced the students to

develop their project using a predefined design. Lower level methods such as

drawImage should be provided instead.

• The framework should be easy to learn. Frameworks with an extensive feature

set are difficult to learn, mostly because of the sheer number of options offered

to the programmer. Most game development kits on the market suffer from this

problem, since they target commercial game companies. The framework to be

developed should have a limited feature set, focusing on the features students

need. A simple API should be easier to learn.

• The framework should provide fast results. Some game development frameworks

require hundreds of lines of code before a programmer can open a window

and draw on it. Although this approach might provide additional flexibility,

it becomes a frustrating learning tool since an important amount of effort is

required to get an initial result. The framework to be developed should allow

students to get fast results, thus motivating them to learn more about the tool.

• The framework should be properly documented. This was the second major

drawback of the game-specific GUI: lack of documentation. Even though the

framework provided a complete API to build the game, the API was not docu-

mented, thus difficult to learn. Students wanting to use the framework had to

dive into the source code.

• The framework should be reasonability fast. If the students want to include

real time animations into their game, the provided framework must be able to

run at a reasonable frame rate.

19

4.2. Current Game SDKs on the Market

• The framework should be easy to install. Although the School of Computer

Science provides all the resources students require to complete the project, some

students prefer to work from their home. Thus, the framework should be easy

for them to install and use. A single file installation would be preferable.

4.2 Current Game SDKs on the Market

In information technology, the expression “Re-inventing the wheel” symbolizes the

absurdity of developing software for a specific task when such software is already

available. Thus before proposing to build a new game development tool, we surveyed

the game development tool currently available.

The following evaluation criteria were used:

• Portability: On which platform can it be used?

• Performance: How fast/optimized is it?

• Ease of use: How easy is it to learn and use?

• Ease of installation: How easy is it to install?

4.2.1 DirectX

By far, DirectX is the most popular software development kit freely available. The

API allows developers to draw on the screen (both in 2D and in 3D), play sounds

and music, capture input from the keyboard/mouse/joystick and create multiplayer

network games. It is used by numerous large game programming companies and is

supported by Microsoft, one of the largest software companies in the world. However,

DirectX suffers from two major flaws: it is only available on the Microsoft operating

systems and can be very difficult to learn for people with little prior game program-

ming knowledge.

DirectX would be the ideal choice if the framework was only needed in a Microsoft

environment. However, the School of Computer Science favors a Unix environment.

20

4.2. Current Game SDKs on the Market

4.2.2 SDL : Simple Media Layer

SDL is a relatively new member to the game programming community. Created by

Sam Lantinga, a software engineer for Blizzard Entertainment, this API includes

modules to interact with video, audio and input components. Code written in SDL

is very portable. Even though Windows, Linux, MacOSX and BeOS are the only

officially supported operating systems, games written in SDL are reported to work

on many other OS with little or no modification. Several commercial projects were

built using SDL, including the Linux port of Civilization 3. However, SDL is a tool

with no commercial backing.

SDL is the ideal software development kit when working in a platform independent

environment. However, given the lack of commercial support, it is somewhat less user

friendly to install and to use.

4.2.3 OpenGL

Before being used for game development, OpenGL was the defacto standard for CAD

and simulation development. It is well known for its speed, performance and porta-

bility. Unfortunately, it is also one of the most complicated APIs to learn and offers

no sound support. It does, however, have a large backing in the industry and a

tremendous amount of documentation.

Like SDL, OpenGL is a good choice for portability and performance. However, it

is very low level and does not offer all the required components. For those reasons,

it is used in combination with another development kit such as SDL or DirectX.

4.2.4 Java

Because of its interpreted nature, Java is often considered too slow for game develop-

ment. However, newer versions of Java (such as 1.4.2 and 1.5) feature video hardware

acceleration, allowing Java games to run at an impressive frame rate. Unfortunately,

21

4.2. Current Game SDKs on the Market

Software

Development

Kit

DirectX SDL OpenGL Java

Portability: Windows

Only

Windows,

MacOSX,

Linux, etc

Windows,

MacOSX,

Linux, etc

Any platform

with a good

JVM

Performance: Fast Fast Fast Medium

Ease of use: Hard to learn,

but gets eas-

ier

Not too hard Very hard,

obscure

sometimes

Easy to use,

harder to use

properly

Ease of instal-

lation:

Very Easy Somewhat

complicated

Easy Very Easy

Table 4.2: Evaluation summary of the various game development kits available on

the market

properly using these features can be a very tricky task, especially since the docu-

mentation is scattered across many books and web sites. Java has the backing of

numerous large companies such as IBM and Sun. It provides all the necessary tools

to control video, sound and input components. Java is also known for its ease of use

and portability.

Java would be the ideal game development platform if it wasn’t slow. Although

the hardware acceleration features do help improve performance, the proper use of

these functionalities is outside the scope of an undergraduate project course.

4.2.5 Summary of Evaluation

None of the game software development kits that have been evaluated matched the

goals outlined in the previous section. The tools presented have a high learning curve

and would not be appropriate for an undergraduate course. However, both Java

and SDL have enormous potential, and therefore might be used to build the new

22

4.2. Current Game SDKs on the Market

framework.

Benchmark and test applications were built for both SDL and Java. However,

Java was found to be the ideal implementation candidate for the framework (see

section 6.1). In addition to being easy to use and install, the benchmark results (see

section 6.2) indicated that Java’s graphic performance was more than sufficient.

23

Part II

Minueto

Chapter 5

A Simple Object-Oriented Framework

Minueto is a multi-platform framework who’s goal is to simplify the game devel-

opment process by encapsulating complex programming tasks such as graphics, audio

and keyboard/mouse programming into simple to use objects. The framework was

originally designed as a game development framework for COMP-361, the Systems

Development Project course at McGill University. Students using this infrastructure

are only in their second year of undergraduate studies, and therefore Minueto is de-

signed to offer an easy to learn API. However, Minueto is a complete framework and

can be of use in any 2D game development project.

5.1 Architecture

Minueto is designed to be a modular framework. Its core components include a 2D

graphics engine and a keyboard/mouse listener. Additional components are planned

to extend Minueto’s core functionalities. Minueto’s modular infrastructure allows a

programmer to provide additionnal services by creating expansion modules, such has

sound support or networking.

25

5.2. 2D Graphics Engine

5.2 2D Graphics Engine

Minueto’s core component includes a 2D graphic engine designed for raster/bitmap

graphics. The core classes of this module are MinuetoWindow and MinuetoImage. A

MinuetoWindow object corresponds to a window displayed by the operating system.

Images are stored in MinuetoImage objects and displayed on the screen when drawn

in the MinuetoWindow.

5.2.1 The Window

The MinuetoWindow object (see figure 5.1) is the canvas for the game. Images

representing the game are drawn on the MinuetoWindow, which is displayed to the

user. At the operating system layer, a MinuetoWindow is a hardware accelerated

drawing surface.

The desired size of this drawing surface is declare in the MinuetoWindow construc-

tor. Once a MinuetoWindow is created, it cannot be resized. If a MinuetoWindow of

a difference size is required, the current window can be closed and a new one can be

created.

A MinuetoWindow can be declared as fullscreen. A fullscreen MinuetoWindow

has no title bar or window border and completely covers the screen. Minueto will

also change the resolution of the screen to match the desired size of the window. If

Minueto cannot, for any reason, enable fullscreen mode, an exception will be thrown.

5.2.2 The Images

MinuetoImages (see figure 5.2) are the basic blocks of a Minueto application. The

different types of images available are sub-classes of the MinuetoImage class. The

MinuetoImageFile class is used to load images from files. Various popular image

formats, such as JPEG, GIF and PNG are supported, as are transparency layers

found in several image formats. The MinuetoRectangle and MinuetoCircle classes

are used to create images of rectangles and circles. An empty (transparent) image of

specific size can also be created by using the MinuetoImage class directly. This can

26

5.2. 2D Graphics Engine

MinuetoWindow

<< create >>+MinuetoWindow(iWidth:int,iHeight:int,iColorDepth:int,bFullScreen:boolean):MinuetoWindow

+setVisible(bValue:boolean):void

+setCursorVisible(bVisible:boolean):void

+draw(mimImage:MinuetoImage,iX:int,iY:int):void

+drawLine(mcoColor:MinuetoColor,iXStart:int,iYStart:int,iXStop:int,iYStop:int):void

+render():void

+clear():void

+clear(mcoColor:MinuetoColor):void

+setLocation(iX:int,iY:int):void

+setTitle(strTitle:String):void

+getWidth():int

+getHeight():int

+getDrawAreaWidth():int

+getDrawAreaHeight():int

+getPositionX():int

+getPositionY():int

+close():void

+save(strFilename:String):void

+getScreenshot():MinuetoImage

+getFrameRate():double

+setMaxFrameRate(dValue:double):void

MinuetoFont

<< create >>+MinuetoFont(strFontName:String,iFontSize:int,bBold:boolean,bItalic:boolean):MinuetoFont

MinuetoColor

<< create >>+MinuetoColor(iRed:int,iGreen:int,iBlue:int):MinuetoColor

<< create >>+MinuetoColor(dRed:double,dGreen:double,dBlue:double):MinuetoColor

Figure 5.1: UML diagram of the 2D graphic engine component (part 1)

27

5.2. 2D Graphics Engine

be useful to create more complex images by compositing multiple images.

To draw a string on a MinuetoWindow, the string must first be converted to

a MinuetoImage. Given a string, a MinuetoFont, a font size and a MinuetoColor, a

MinuetoText object representing the string of the given color and font can be created.

This object, which is a sub-class of MinuetoImage can be drawn and manipulated like

any other images loaded or created in Minueto.

Minueto includes functions to scale, rotate or crop images. These functions are

built into the MinuetoImage class and return new transformed copies of the image.

The original image, however, remains unchanged. Complex new images can be created

dynamically by drawing several simple images on a blank MinuetoImage.

5.2.3 Abstraction Classes

Minueto uses two small classes to define the concept of colors and fonts (see figure

5.1). These classes allow Minueto to have its own abstraction of these concepts and

thus avoid directly using components of the implementation platform.

MinuetoFont is a small class that contains a reference to a font. The name of the

font is declared when constructing the object. Common fonts for the implementation

platform should be available as static objects stored within MinuetoFont.

MinuetoColor is a small class that contains an RGB (red, green, blue) color value.

Common colors, such a red, green, blue, yellow, black and white can be accessed as

static objects within MinuetoColor. Other colors can be created by passing the RGB

color value to the constructor.

5.2.4 Drawing

Both the MinuetoImage and MinuetoWindow class have draw methods. Although

their function prototypes are identical, the two functions have two very different goals.

The first draw method can be used to draw MinuetoImages in other MinuetoImages,

as previously discussed. The second draw method, found in MinuetoWindow, allows

MinuetoImages to be drawn on the screen. It should be noted that changes to the

MinuetoWindow are not immediately shown on screen.

28

5.2. 2D Graphics Engine

M
in

u
e
to

Im
a
g

e

<
<

c
re

a
te

>
>

+
M

in
u
e
to

Im
a
g
e

(i
X

:i
n
t,
iY

:i
n
t)

:M
in

u
e
to

Im
a
g
e

+
c
ro

p
(i
C

o
rn

e
rX

:i
n
t,
iC

o
rn

e
rY

:i
n
t,
iS

iz
e
X

:i
n
t,
iS

iz
e
Y

:i
n
t)

:M
in

u
e
to

Im
a
g
e

+
ro

ta
te

(d
A

n
g
le

:d
o
u
b
le

):
M

in
u
e
to

Im
a
g
e

+
s
c
a
le

(d
F

a
c
to

rX
:d

o
u
b
le

,d
F

a
c
to

rY
:d

o
u
b
le

):
M

in
u
e
to

Im
a
g
e

+
fl
ip

(b
H

o
ri
z
o
n
ta

l:
b
o
o
le

a
n

,b
V

e
rt

ic
a
l:
b
o
o
le

a
n

):
M

in
u
e
to

Im
a
g
e

+
d
ra

w
(m

im
Im

a
g
e

:M
in

u
e
to

Im
a
g
e

,i
X

:i
n
t,
iY

:i
n
t)

:v
o
id

+
d
ra

w
L
in

e
(m

c
o
C

o
lo

r:
,i
X

S
ta

rt
:i
n
t,
iY

S
ta

rt
:i
n
t,
iX

S
to

p
:i
n
t,
iY

S
to

p
:i
n
t)

:v
o
id

+
g
e
tW

id
th

()
:i
n
t

+
g
e
tH

e
ig

h
t(

):
in

t

+
s
a
v
e

(s
tr

F
ile

n
a
m

e
:S

tr
in

g
):

v
o
id

+
c
lo

n
e

()
:O

b
je

c
t

M
in

u
e
to

T
e
x
t

<
<

c
re

a
te

>
>

+
M

in
u
e
to

T
e
x
t(

s
tr

T
e
x
t:
S

tr
in

g
,m

fo
F

o
n
t:
,m

c
o
C

o
lo

r:
):

M
in

u
e
to

T
e
x
t

<
<

c
re

a
te

>
>

+
M

in
u
e
to

T
e
x
t(

s
tr

T
e
x
t:
S

tr
in

g
,m

fo
F

o
n
t:
,m

c
o
C

o
lo

r:
,b

A
n
ti
A

lia
s
e
d

:b
o
o
le

a
n

):
M

in
u
e
to

T
e
x
t

+
s
e
tU

p
T

e
x
t(

s
tr

T
e
x
t:
S

tr
in

g
,m

fo
F

o
n
t:
,m

c
o
C

o
lo

r:
,b

A
n
ti
A

lia
s
e
d

:b
o
o
le

a
n

):
v
o
id

M
in

u
e
to

R
e
c
ta

n
g

le

<
<

c
re

a
te

>
>

+
M

in
u
e
to

R
e
c
ta

n
g
le

(i
S

iz
e
X

:i
n
t,
iS

iz
e
Y

:i
n
t,
m

c
o
C

o
lo

r:
,b

F
ill

:b
o
o
le

a
n

):
M

in
u
e
to

R
e
c
ta

n
g
le

M
in

u
e
to

C
ir

c
le

<
<

c
re

a
te

>
>

+
M

in
u
e
to

C
ir
c
le

(i
S

iz
e
X

:i
n
t,
iS

iz
e
Y

:i
n
t,
m

c
o
C

o
lo

r:
,b

F
ill

:b
o
o
le

a
n

):
M

in
u
e
to

C
ir
c
le

<
<

c
re

a
te

>
>

+
M

in
u
e
to

C
ir
c
le

(i
R

a
d
iu

s
:i
n
t,
m

c
o
C

o
lo

r:
,b

F
ill

:b
o
o
le

a
n

):
M

in
u
e
to

C
ir
c
le

M
in

u
e
to

Im
a
g

e
F

il
e

<
<

c
re

a
te

>
>

+
M

in
u
e
to

Im
a
g
e
F

ile
(s

tr
F

ile
n
a
m

e
:S

tr
in

g
):

M
in

u
e
to

Im
a
g
e
F

ile

Figure 5.2: UML diagram of the 2D graphic engine component (part 2)

29

5.3. Keyboard / Mouse Listener

Synchronizing screen updates with the refresh rate of the computer monitor is a

difficult task. Failure to do so can result in noticeable graphic glitches. A common

solution to this problem is to use double buffering. Frames are prepared/drawn in an

alternate space in video memory and the content of this alternate buffer is copied to

the active buffer when the next frame must be displayed. MinuetoWindow contains a

render method which shows the next frame by displaying the content of the alternate

buffer on the screen.

5.3 Keyboard / Mouse Listener

Keyboard and mouse input handling in Minueto is done differently than in standard

user interface frameworks. The following section describes why traditional input

gathering techniques, which are usually based on callbacks, were not appropriate for

Minueto. In addition, Minueto’s proposed solution is also outlined.

5.3.1 Traditional solutions

In a traditional game, keyboard/mouse input is handled with a massive switch state-

ment. Keyboard input is typically stored in a fixed length buffer. A switch statement

must test the first character in the buffer to determine which button was pressed.

Given that one case statement is required for each key, these switch statements

typically contain hundreds of case blocks that, although can be implemented very

efficiently, are often very difficult to maintain.

In a traditional GUI application, keyboard/mouse input is handled by an event-

based system. When a keyboard/mouse event is detected, a new thread is created

to handle that event and execute the associated code. A programmer defines the

behavior of a GUI component by implementing a particular interface and registering

it with the component. Applications with a high rate of input, such as games, often

suffer a performance degradation, because a high number of short lived threads have

to be created to handle the input.

Proper software engineering and modularity requires avoiding the massive switch

30

5.3. Keyboard / Mouse Listener

statement solution. Handlers are a good idea, but they require additionnal threads.

Ideally, the number of threads required to run a game should be minimized, since

threads introduce concurrency and subsequently, additionnal complexity.

5.3.2 Queuing System

Minueto uses the MinuetoEventQueue object (see figure 5.3) to record input from the

keyboard and the mouse. The events stored in the queue can then be processed using

the handle method found in the queue.

In the backgroud, invisible to the user, events are added in real time to the queue

by a thread monitoring the inputs devices. On the user side, events can be processed

by the game thread one at a time by calling the handle method.

Minueto uses handler interfaces to process events stored in the queue. To deal

with a specific type of input, a programmer must implement a predefined interface and

register it with the MinuetoEventQueue. When an event is processed, the appropriate

method in the registered handler is called. For example, if a keyboard event, such as

a key press is processed, the handle method will execute the keyPress method in the

keyboard handler.

The implementation of Minueto’s core component requires the following types of

event handler:

• Keyboard input (key press / release)

• Mouse button input (mouse button press / release)

• Mouse motion input (moving the mouse)

• Window events (minimize, maximize, get focus, lose focus)

It is important to note that if no keyboard handlers are registered, then no key-

board events will be recorded on the MinuetoEventQueue. Only one handler of a

given type can be registered at a time. If a second handler of the same type is reg-

istered, the first handler is erased for efficiency reasons and the second one is used.

31

5.3. Keyboard / Mouse Listener

MinuetoEventQueue

<< create >>+MinuetoEventQueue():MinuetoEventQueue

+hasNext():boolean

+handle():void

+registerKeyboardHandler(mkhHandler:MinuetoKeyboardHandler,miwWindow:MinuetoWindow):void

+registerMouseHandler(mmhHandler:MinuetoMouseHandler,miwWindow:MinuetoWindow):void

+registerWindowHandler(mwhHandler:MinuetoWindowHandler,miwWindow:MinuetoWindow):void

MinuetoMouse

+MOUSE_BUTTON_LEFT:int= 1

+MOUSE_BUTTON_MIDDLE:int= 2

+MOUSE_BUTTON_RIGHT:int= 3

MinuetoKeyboard

+KEY_A:int= 65

+KEY_B:int= 66

+KEY_C:int= 67

+KEY_D:int= 68

+KEY_E:int= 69

+KEY_F:int= 70

+KEY_G:int= 71

+KEY_H:int= 72

+KEY_I:int= 73

+KEY_J:int= 74

+KEY_K:int= 75

+KEY_L:int= 76

+KEY_M:int= 77

+KEY_CAPSLOCK:int= 20

+KEY_SHIFT:int= 16

+KEY_CONTROL:int= 17

+KEY_ALT:int= 18

+KEY_ENTER:int= 10

+KEY_BACKSPACE:int= 8

+KEY_SPACE:int= 32

+KEY_UP:int= 38

+KEY_DOWN:int= 40

+KEY_LEFT:int= 37

+KEY_RIGHT:int= 39

+KEY_DELETE:int= 8

+KEY_ESC:int= 27

+KEY_PAGEUP:int= 33

+KEY_PAGEDOWN:int= 34

+KEY_END:int= 35

+KEY_HOME:int= 36

+translateKey(iValue:int):String

<< interface >>

MinuetoKeyboardHandler

+handleKeyPress(iValue:int):void

+handleKeyRelease(iValue:int):void

<< interface >>

MinuetoMouseHandler

+handleMousePress(iX:int,iY:int,iButton:int):void

+handleMouseRelease(iX:int,iY:int,iButton:int):void

+handleMouseMove(iX:int,iY:int):void

<< interface >>

MinuetoWindowHandler

+handleGetFocus():void

+handleLostFocus():void

+handleQuitRequest():void

+handleMinimizeWindow():void

+handleRestoreWindow():void

Figure 5.3: UML diagram of the input component

32

5.4. Possible Expansion Modules

Depending on the type of application, switching handlers depending on the context

or mode might be a good idea. For example, a game might have a handler to handle

input on the game menu and a second handler for game controls.

5.3.3 Events From Expansion Modules

When possible, other modules should take advantage of the Minueto queue system.

For example, since sound playback is non-blocking (see section 5.4.1) the Minue-

toSound module could add a message to the queue when a sound has been successfully

played.

It is important to note that each type of event requires its own handler.

5.4 Possible Expansion Modules

Currently, only the core component of Minueto has been designed and implemented.

However, the following section presents components that could be developed to ex-

pand Minueto’s feature set.

5.4.1 MinuetoSound

The MinuetoSound component allows sound playback. Although functions activating

sound playback are non blocking, an optional MinuetoSoundHandler can notify the

application when the sound playback is completed. The playback of minimum 16

simultaneous channels should be supported. Built-in functions should allow arbitrary

changes in the playback position of the file (rewind, forward, reset, etc.).

MinuetoSound should support both sampled sounds and MIDI playback. Sup-

ported sampled sound format should include uncompressed wave and at least one

popular compressed formats (such as MP3 or OGG). Given the amount of resources

available on modern computers, MinuetoSound does not need to support playback of

sounds generated on-the-fly (FM synthesis).

33

5.4. Possible Expansion Modules

5.4.2 MinuetoNetworkMessaging

The MinuetoNetworkMessaging component simplifies network communication by cre-

ating an abstraction layer over the TCP/IP socket implementation of the operating

system. Messages sent are user-created sub-classes of the MinuetoNetworkMessage

class. Messages are delivered on the recipient’s registered MinuetoEventQueue and

handled with a MinuetoNetworkHandler object.

MinuetoNetworkMessaging uses a client-server architecture. Clients connect to

the server by providing the server’s IP address and port number. Upon connection,

the server returns to the client a player id number which acts as the address of the

client. Messages sent from one player to another are routed through the server. The

id 0 is reserved for the server (so that clients always know the server id) and the id -1

is a multicasting address which broadcast a message to every player and the server.

The limitations imposed on the format of messages are determined by the imple-

mentation language. Ideally, this module should allow the sending and receiving of

any serializable object.

In addition, a peer-to-peer version of this module could be implemented. One

major difficulty in creating this component would be implementing an efficient routing

algorithm for the peer-to-peer network.

5.4.3 MinuetoNetworkSync

The MinuetoNetworkSync component is a highly-concurrent network object store. It

abstracts network communication between different applications. Applications just

share a number of objects.

At first glance, this module might seem similar to the Common Object Request

Broker Architecture (CORBA) or to Remote Method Invocation (RMI). However,

MinuetoNetworkSync is simpler than both models because it has a unique centralized

server which stores all shared objects and removes the need for a naming server.

Shared objects are created by a client and registered with the server. A unique

name is assigned to each object. Other clients can use this name to retrieve the object

from the object store. Depending on the features available on the implementation

34

5.4. Possible Expansion Modules

language, objects registered with clients can be designed in different ways:

• If the implementation language supports reflection, then any objects can be

registered with the MinuetoNetworkSync module. The module can use reflection

to read/write directly into any registered object.

• If the implementation language supports aspects, then any objects can be reg-

istered with the module. The code to allow MinuetoNetworkSync to read/write

registered objects could be weaved in at compile time. To simplify the identi-

fication of shared objects at compile time, shared objects should implement an

empty predefined interface.

• If the implementation language does not support reflection or aspects, then

shared objects could implement an interface which defines read/write operations

on the object. These functions could then be used by the module to monitor

and update registered objects.

5.4.4 MinuetoXML

Computer games have various long-term storage needs. Such needs include map level

data (see figure 5.4), saved games, NPC dialogues, etc. Simple text files are a popular

solution to this long-term storage need, but they are typically complicated to parse

and inflexible. The MinuetoXML component provides an alternative for long-term

storage by allowing the previously mentioned items to be stored in an XML file.

XML provides a well-structured and flexible format, where data can be saved in an

hierarchical tree. Data can then be easily retrieved by parsing the tree. In addition,

if the structure of the tree needs to be changed, only slight modification of the parser

is required.

The XML tree can be initialized by creating a MinuetoXMLTree object (which

will also acts as the root node). Nodes can be added to the tree through the use of

MinuetoXMLNode objects. Attributes can be associated to nodes by creating objects

of the MinuetoXMLAttribute type. The MinuetoXMLTree also provides functions to

load and save the tree in an compressed or uncompressed text format. Information

35

5.4. Possible Expansion Modules

<?xml version="1.0" encoding="UTF-8"?>

<Map>

<Size Height="50" Width="50"/>

<Data>

<Tile x="0" y="0" type="2" imagekey="15"/>

<Tile x="0" y="1" type="2" imagekey="15"/>

...

<Tile x="4" y="21" type="1" imagekey="0">

<City name="Terrebonne" type="0" owner="0" production="3">

<UnitProd id="16" type="3" owner="0" buildstat="1"/>

</City>

</Tile>

...

<Tile x="49" y="48" type="1" imagekey="0"/>

<Tile x="49" y="49" type="1" imagekey="0"/>

</Data>

</Map>

Figure 5.4: Example of a game map stored as a XML file.

can be read from the XML tree by traversing the various nodes and examining their

attributes.

5.4.5 MinuetoTileMap

Early 2D video games had important memory restrictions. First generation consoles

had very little video memory, and storage memory in game cartridge was very ex-

pensive. This limitation could be overcome by the use of a technique known as tile

maps. This technique allows developers to use a limited number of tiles to create

large worlds for players to explore. These square tiles can easily be loaded in video

memory. The game can then consult an array containing the level data to determine

where each tile should be drawn.

The MinuetoTileMap component would allow fast development of games using a

tile-based background. The module should support square tiles of a user-defined size

36

5.4. Possible Expansion Modules

Figure 5.5: Mappy Win32, a tile map editor.

(16x16, 32x32, 64x64, 128x128) and maps of arbitrary sizes. MinuetoTileMap could

allow attributes to be assigned to coordinates, such as the name of a city, the id of

an event triggered by stepping on the tile, etc.

The data stored in the map (both tile information and additional attribute) could

be saved in XML format. MinuetoTileMap could also be compatible with existing tile

map editors, such as Mappy Win32 (see figure 5.5). The module would provide the

necessary functions to load and save a map. When provided with the MinuetoImages

of the tiles to display, MinuetoTileMap could render a section of the map and return

it as a MinuetoImage. A rudimentary level editor should be provided to serve both

as a tool to make the maps and example code to understand how MinuetoTileMap

can be used.

37

5.4. Possible Expansion Modules

5.4.6 MinuetoUI

Visual development tools, such as Visual Basic, TkInter and Swing provide reusable

user interface (UI) components such as text boxes, drop down boxes, buttons, etc. The

behavior of these UI components is often multi-threaded, one thread being created

each time a user interacts with these components. This can lead to an important

performance impact if the user heavily interacts with the application, as mentioned

in section 5.3.1.

MinuetoUI could provide reusable user interface components that integrate with

the MinuetoEventQueue system. The behavior of these components would be defined

by handlers. Events produced by the components, such as clicking and editing, would

be stored in the MinuetoEventQueue and handled when the handle method is called,

much like keyboard and mouse input.

This module could be particularly difficult to implement because of the subtleties

in the interaction between this module and the keyboard/mouse input module. For

example, when a keyboard key is pressed, Minueto must determine if the keyboard

input should be sent to a text box. This means Minueto must track mouse clicks to

determine which, if any, text box has focus.

38

Chapter 6

An implementation in Java

6.1 Why Java?

The first implementation of Minueto was developed using C++ and the SDL frame-

work. The C++ programming langage was chosen because it is favored by game

developers. The SDL development framework was chosen because of its platform

independence and impressive community support.

However, after a few weeks of development, it became obvious that using a game

development framework in C++ would require a skill-set that McGill Computer Sci-

ence undergraduate students did not have. Teaching this skill-set in Comp-361 would

have greatly increased the burden on students without adding to the required teaching

goals.

The first year of undergraduate studies at McGill in Computer Science heavily

focuses on object-oriented programming in Java. However, we had reservations about

game development in Java, given its interpreted nature and the slow performance of

Swing. Before committing Minueto to Java, we needed to test the performance of the

Java 2D engine to determine if it was suitable for our needs.

The initial benchmarks for simple demos running in a window of 800x600 pixels

on the school’s Linux workstation provided results of 150 frames per second. This

result was well above our initial expectation. However, more tests were required to

determine if a sufficient frame rate could be maintained in a complete game. In the

39

6.2. Performance Analysis

end, inefficient programming of the game demo logic resulted in a greater impact to

the frame rate than the increased burden on the Java 2D engine. The engine could

easily achieve the required performance on a moderately fast computer (1Gz CPU

with a graphic card that supports hardware acceleration). More information on the

benchmark programs and results can be found in the next section.

Given its platform independence and sufficient performance, we chose Java as the

implementation language for Minueto. More importantly, we chose Java because we

knew that students would have sufficient background to properly use the framework.

6.2 Performance Analysis

As previously mentioned, before selecting Java as our first implementation platform,

we needed to study the performance and limitations of the Java 2D engine. The

following section describes some of the initial benchmarks that were created for this

purpose, and the analysis of the data we gathered.

6.2.1 Benchmarks

The first goal of the benchmarks were to determine if the Java 2D engine had all

the necessary features to implement Minueto. The second goal was to evaluate its

performance and ascertain if a sufficient frame rate could be achieved. The first round

of tests used two small benchmark applications.

The first benchmark, BlackWizardGrass, features a small character sprite that

can be moved over a field of grass (see figure 6.1). The field of grass is a tile map

composed of 32x32 pixels grass tiles. The field is redrawn, tile-by-tile, at every frame.

The sprite character is composed of eight 32x32 pixels tiles, each of them representing

a different orientation or step in the walk cycle of the character. Only one of these

tiles is displayed at each frame, depending on the character’s current orientation and

step. The benchmark runs in a 800 by 600 pixel window.

The second benchmark, TownMap, is very similar to the first one (see figure 6.2).

It features three small character sprites walking over a slightly more complex tile

40

6.2. Performance Analysis

Figure 6.1: The first benchmark, BlackWizardGrass

map. The tile map is composed of several different 32x32 pixels tiles, some of them

depicting the edge of a small cliff. The user can control one of the characters. The two

other characters move randomly. Like in the previous demo, each of the characters

have eight animation tiles, each one depicting a different step or orientation in the

walk cycle of the character.

Both benchmarks can be launched from a small launcher application. This appli-

cation allows the user to run the benchmark in either windowed mode or fullscreen

mode. The user can also chose to use either double buffering techniques discussed in

section 6.3.2.

6.2.2 Benchmark Results

There were no problems implementing both benchmarks using the Java 2D engine.

Given the simplicity of both applications, efforts could be concentrated on tuning

41

6.2. Performance Analysis

Figure 6.2: The second benchmark, TownMap

both benchmarks to maximize performance. The minimum acceptable frame rate

was 30 fps for both benchmarks.

The first demo, BlackGrassWizard achieved impressive performance (see figure

6.3). In windowed mode, the benchmark broke the 150 fps barrier on the workstations

found in the student’s labs. In fullscreen mode (which was available only on Windows

XP at the time), the frame rate capped at 70 fps, which corresponds to the refresh

rate of the monitors. A quick look at the results allowed us to conclude that the

Windows version of the Java2D engine (which relies on DirectX for its acceleration)

outperformed Linux (which relies directly on X11 for its acceleration). Finally, even on

modest hardware, the target goal of 30 fps was achieved. The mediocre performance

of MacOS X’s JVM is explained in section 6.5.2.

Results from the second benchmark (see figure 6.4) are very similar to the first

benchmark. This is not surprising since both benchmarks have similar graphics. The

42

6.2. Performance Analysis

Figure 6.3: Frame rate achieved while running BlackWizardGrass demo.

small loss of speed in the second benchmark is caused by the calculations used to

move the two random characters.

Given that we were able to build our two benchmarks and run them at an accept-

able frame rate, we can conclude that the Java2D engine can be used to implement

Minueto.

6.2.3 Other Performance Analysis

Both benchmarks described in the previous section show that the Java 2D engine

is a good candidate for implementing Minueto. However, the simplicity of both

benchmarks prevents us from drawing any solid conclusion. Thus, a third benchmark

is required.

At the beginning of this project, the game for the 2005 winter session of COMP-

361, Strategic Conquest, had already been chosen. This game was an ideal benchmark

since Minueto would be first used by the students to implement this game. It was

decided that if a simple yet complete version of the game could be developed using

the Java 2D engine, then we would definitively choose Java as an implementation

43

6.2. Performance Analysis

Figure 6.4: Frame rate achieved while running TownMap demo.

language for Minueto.

It took three weeks to create this benchmark (see figure 6.5). Given the complexity

of Strategic Conquest’s rule set and the required client/server architecture, this was

not a surprise. On a modern computer (1.5 Ghz processor or faster), the game runs at

a constant 30 fps on both Windows and Linux. On a slower computer, or a computer

using MacOs X, an average frame rate of 15 fps was achieved.

Testing of the game revealed that the Java 2D engine was not the display bot-

tleneck in the application. Careful profiling revealed that the game architecture,

inefficient due to the rapid game development, caused a larger performance impact

than rendering to the screen. When a player moves a unit, the frame rate drops as

much as 30%. Synchronizing both clients and the server turned out to be a very

ressource expensive task in a poorly defined architecture.

Given the performance achieved by all three benchmarks, it was decided that the

Java would be the ideal candidate to implement Minueto. The Java 2D engine would

be used to render the graphics and AWT’s listeners could be used to gather user

input.

44

6.3. Programming Java Graphics

Figure 6.5: Test Implementation of Strategic Conquest

6.3 Programming Java Graphics

The Java implementation of Minueto is pretty small, less than 5000 lines of code.

One of the important challenge in building the Java implementation of Minueto was

learning how to properly harness the acceleration features of the Java 2D engine.

6.3.1 Types of Images

In Java 1.4, Sun introduced the notion of volatile images, accelerated images whose

content is stored in video memory. Unfortunately, on certain platforms, the content

of the video memory can be replaced by another application. Thus, the volatile image

must be reloaded from the original file every time the content of the video memory

is lost.

Also introduced in Java 1.4 was the concept of managed images. This type of

45

6.3. Programming Java Graphics

image is administered by the Java Virtual Machine. When possible, the JVM tries

to accelerate the drawing speed of the image by creating an accelerated copy in video

memory. The JVM also deals with the “content lost” problem found in volatile

images. However, managed images can be difficult to use because several methods

(including methods that modify the image at the pixel level) can make a managed

image lose its acceleration benefits.

Chet Haase, an engineer on the Java2D team, documented no less than 38 different

methods to create an image with the Java 1.4 API. The different methods produce

images with various characteristics. The key to successful image acceleration is to

create an image with the same characteristics as the current display. For example, if

the current display is switched to RBGA 32-bit color mode, then all images should

be created, loaded and/or converted to this color mode. Images stored using different

color modes are converted when drawn to the screen, causing tremendous slowdowns.

Minueto avoids this problem by creating and/or loading all images at the same

color mode as the current display. To achieve this, Minueto requires that the Minue-

toWindow object be initialized first. Images are created and/or loaded as managed

images and their acceleration is managed by the JVM. These managed images cannot

lose their accelerated status since the methods causing the loss of acceleration are not

used by the framework and are not available to the users.

6.3.2 Double Buffer Strategy

Early in the implementation phase, it was decided that Minueto would use a double

buffer strategy. It was also decided that the implementation details of the double

buffer would be hidden from the students.

The initial version of Minueto provided two double buffering techniques: one that

manually implemented double buffering and one that was automated by the Java

Virtual Machine (JVM). Having two methods allowed us to measure the effectiveness

of the JVM’s double buffering capabilities.

Minueto could manually create a double buffer by using a hardware accelerated

image as the back buffer. All draw operations were done on the back buffer and a

46

6.4. Documentation Strategy

render method copied the content of the back buffer to the screen. Double buffering

can also be managed by the JVM by using the createBufferStrategy method.

After several tests, it was obvious that a manual solution was not needed since the

automated solution outperformed the manual one in most situations. Thus, Minueto

was implemented with the JVM’s double buffering technique.

6.4 Documentation Strategy

It has been shown that the difference between a novice and an expert chess player

is the fact that the latter has thousands of board configuration stored in his long

time memory [HK73]. Expert players can use these memorized board configurations

to derive their next move without having to rely too much on their limited work-

ing memory. Further research has shown that problem solving relies more on stored

memories than complex reasoning [W.94]. This theory can easily be extended to

programmers, where the difference between a novice and an expert is years of prob-

lem solving experience [GS02]. An experienced programmer can draw upon years of

previous programming challenges to find similarities between previous and current

problems.

The main purpose of Minueto is to provide a tool that is easy to learn and to use.

Students with little or no game programming background do not have the required

experiences to deal easily with problems commonly associated with game program-

ming. Minueto’s documentation must address that fact and allow the programmer to

learn about various problematic situations and their solutions.

Minueto’s documentation is available in three different formats to better address

the different learning habits of students. The following sections describe these formats

and their learning strategies.

6.4.1 Tutorials

On the Minueto website, students can find a collection of Howto documents. These

short documents are tutorials that cover different specific aspects of Minueto. By

47

6.4. Documentation Strategy

reading these tutorials, students can gain insight on how to achieve basic tasks with

Minueto and how to solve common problems. These documents can be read in any

order, although some dependencies do exist (to understand X, you must first read Y).

This type of documentation targets students who prefer learning by reading books

and manuals.

A complete list of the tutorials available on the Minueto website can be found in

Appendix C.

6.4.2 Examples

Some students prefer to learn by example. Minueto is distributed with over 20 ex-

amples that cover a wide range of specific topics. Each example is designed to solve

exactly one problem. This allows the code for the examples to be as short as pos-

sible, thus making it easier for students to understand. By playing around with the

examples, the student can gain hands-on experience with the Minueto framework and

improve on future problem solving with Minueto.

Given their specific nature, the examples also play an important role in regression

testing, as described in section 6.6.3.

A complete list of the examples distributed with the Minueto software development

kit can be found in Appendix B.

6.4.3 Specifications

Early in their Bachelor program, students are encouraged to learn how to use the

Java API documentation. This documentation is an essential tool for both novice

and experienced programmers. The Java API describes the various classes available

in the common class libraries provided by the JDK. For example, instructions on how

to use linked lists, random number generators, strings and so on are stored in this

API documentation.

Given that Minueto is a framework, an API documentation is also an essential tool.

Minueto’s API documentation is built using the standard JavaDoc tool and follows

the documentation guidelines for Java applications as outlined by Sun Microsystem

48

6.5. Current Limitation

[Mic00]. The wording and formatting of Minueto’s documentation follows as closely

as possible those used by the Java API documentation. This allows students to

use previous knowledge of the Java API documentation to navigate and understand

Minueto’s documentation,

6.5 Current Limitation

Although the Java implementation of Minueto was successfully used by several stu-

dents to create impressive game projects, it still has a few unresolved issues.

6.5.1 Single Window Restriction

Currently, the Java implementation of MinuetoWindow is a singleton. This design

decision was heavily influence by Java 2D and the need to prevent the loss of hardware

acceleration.

Hardware acceleration in the Java 2D engine is provided on a “as-available basis”.

Although Java provides several methods to create images, only a few of those methods

will create an accelerated image. Certain operations, such as pixel manipulations, can

cause an image to lose its acceleration status. In the current version of the Sun JDK,

once the acceleration status is lost, it cannot be regained.

The method that creates images using hardware acceleration is keyed to a window.

That means an image is accelerated as long as it is drawn to that window (or a

window that shares similar characteristics). Since we do not fully understand the

performance impact of drawing on a window an image that was not keyed to that

window, we removed the ability to created multiple windows.

Further testing revealed that certain JVMs crash if two double buffered windows

are created. This is a problem with the JVM itself and should be solved in future

JVM releases.

This restriction should be lifted in Minueto 2.0 after more experimentation has

been done on multi-windowed application environments. It should be noted that

students found creative workarounds.

49

6.5. Current Limitation

6.5.2 Apple JVM

The most predominant Java Virtual Machine (JVM) for Windows and Linux is de-

veloped by Sun Microsystems (subsequently referred to as Sun). Apple develops its

own JVM for the MacOs X operating system. Although Sun shares its JVM source

code with Apple, the integration of new features into the Apple JVM requires much

more time. In addition, Apple computers use a processor architecture (PowerPC)

significantly different from those supported by Sun (x68, Sparc). This forces Apple

to re-write platform specific components of the JVM.

Currently, there exists a 18 month delay between the Sun release of a new Java

Development Kit (JDK) and the Apple JDK. Given that Minueto is a cross platform

development framework, its behavior must be similar across all platforms. Thus, new

features added in the Java class libraries can only be used by Minueto once Apple

integrates these feature into their JDK. This creates an important technology delay

for the framework.

One current example of this delay is the addition of nano-second precise timers

in Java 1.5. Java 1.4’s timers are only precise to the milli-second. Given that the

screen is updated several times per second, the precision of timers is paramount.

However, to conserve Minueto’s constant behavior across all platforms, the nano-

second precise timers can only be used once Apple releases a JVM that supports this

feature. To have timers of different precision on different operating systems would

create abnormal behavior when switching from one operating system to another.

It is also important to note that the current Apple JVM does not have a hardware

accelerated Java2D engine. This is a major limitation of the JVM, since games using

Minueto without the hardware acceleration rarely achieve a frame-rate of over 25 fps.

The newest version of the Apple Java runtime (1.5), which is supposed to have a

hardware accelerated Java2D engine, should be release by the time this document is

published. However, users wanting to take advantage of this new Java runtime will

have to buy an upgrade for their operating system (MacOs x 10.4) since the newest

runtime will not work on MacOs X 10.3 and below.

50

6.5. Current Limitation

6.5.3 Keyboard Input on Linux

Keyboard input in Minueto is handled with a queue that stores both key press and

key release events. These events are generate using AWT’s KeyboardListener class.

The Java API specifies that a key release event will only be generated if a key on the

keyboard is released by the user. However, in Linux, under X11, when a key is pressed

and not released, multiple key release events are generated, each one immediately

followed by a key press event. These additional key release events are generated by

X11 which handles a long key press event as a combination of multiple key press and

key releases. Other operating systems also produce numerous key press events, but

only one key release event.

The additional key release events are problematic when a game measures the

length of time keys are pressed. This is impossible to do under Linux because long

key press/release are reported as multiple key press/release. Minueto does have some

built-in features that try to minimize the amount of extra key press/release events,

but this workaround is not always perfectly effective.

This problem cannot be completely fixed until Sun changes the interaction of its

JVM with X11. Sun claims that this is a X11 bug.

There exist two different partial solutions to this problem. Some window managers

(such as KDE), have configuration options that allow to control the behavior of key

repeat events. However, this becomes impractical when distributing the game to a

large number of users. The second solution is to resolve user input once all keyboard

events are processed. Since false key release events are always followed by a matching

key press event, we can usually discard a false key release event if a matching key press

event is found in the queue. An example of this can be found in the TriangleRover

sample code, found in the Minueto SDK.

6.5.4 Fullscreen Mode Under Linux

Currently, Sun’s JVM does not support screen mode changes under Linux. This

means that although a window can be put in fullscreen mode (by putting the window

in the upper corner, stretching it to screen size and hiding the top menu bar), the

51

6.6. Programming Practices

resolution and the color-depth of the screen cannot be changed. This means fullscreen

mode is useless under Linux.

Sun had been aware of this problem for a long time and did not fix it in its latest

major release of Java (1.5). However, Sun does have a bug ticket opened and promises

to fix this in the next major release (1.5.1 or 1.6).

6.6 Programming Practices

Minueto is a project of the McGill Software Engineering Lab. As such, multiple pro-

grammers are expected to contribute to improving/fixing Minueto over a long period

of time. As in all projects involving multiple developers, standards must be estab-

lished early in the project to promote an homogeneous development environment.

6.6.1 Coding Standards

Minueto was coded using Sun Microsystem’s official Java coding standards [Mic00].

Comments are required on all variable declarations and on any non-intuitive piece of

code. The format of the header is standard and largely inspired by those found in

Sun Microsystem’s JavaDoc documentation [Mic99]. Since the API documentation

is auto-generated from the source code, when adding a class or a method, the proper

heading must also be added.

6.6.2 Automated Build System

The building of debug versions and release packages of Minueto is automated through

the use of Ant. The “ant debug” command allows developers to build a debug version

of Minueto. It also places all the examples in the same build directory for easy access.

Final release packages of Minueto can be created using the “ant all-jdk14” or “ant all-

jdk15” commands. Those commands build the packages for use with Sun’s/Apple’s

JDK 1.4.x and Sun’s JDK 1.5.x respectively.

52

6.6. Programming Practices

6.6.3 Regression Testing

As mentioned previously, the code samples found in Minueto’s documentation can

also be used for regression testing. Given their specific nature, developers can use

the samples to test individual aspects of Minueto. When a new feature is added to

Minueto, the developers adding this feature must write a new sample. This gives

developers a permanent tool to test that feature and provides Minueto users with

sample code that allows them to better understand the new feature. As explained in

the following section, all the regression tests must be successfully completed before

changes are submitted to the source control system or released on the Internet. Un-

fortunetaly, common regression tools such as JUnit cannot be used since Minueto’s

tests application have a graphic output which cannot be easily validated.

6.6.4 Source Control

The latest version of Minueto’s source code can be found in a Subversion directory

on a server hosted by the McGill School of Computer Science. Access is only granted

to active developers. New features to Minueto are verified and approved by the

project leader before they are committed to the main source tree. Programmers

contributing code to the Minueto source tree must regularly run all the regression

test on their development machine. Updates having a potential large impact require

the programmer to run the regression tests on multiple platforms and Java SDK.

Programmers are also required to note changes to Minueto in the “changelog.txt”

document.

6.6.5 New Releases

New versions of Minueto are released when a major feature is implemented or when

several bugs are fixed. The new Minueto SDK is announced on the main page and

the download page is updated. Before a new SDK is released, the regression tests are

executed on all supported platforms and all supported Java SDK. Minueto packages

must be created using the automated build system.

53

6.7. Additional Benchmarks

6.7 Additional Benchmarks

Although numerous benchmarks were done to test the performance of Java 2D, no

benchmarks were used during the development of Minueto. Since Minueto focuses

on usability and stability, there was very little need for performance measurements.

However, after a year of development, Minueto is nearing a final release and bench-

marking could provide important optimization information.

6.7.1 Goals and Methodology

As previously mentioned, some benchmarking was done in the beginning of the

project. However, these benchmarks were limited to determining if Java 2D could

obtain a sufficient frame rate. Newer benchmarks should help qualify the relation be-

tween processor and frame rate. In addition, the benchmarks can be used to establish

a relation between video hardware and frame rate, allowing us to better understand

the minimum hardware required to use Minueto.

The first benchmarks were run only on one MacOs X machine. This proved to be

a serious oversight since a non-negligible number of students use MacOs X as their

main development platform. In addition, Apple has released a new version of its Java

development kit (1.5) which promises performance improvements for Java 2D.

The Java 2D benchmarks were completed using two demo applications, Black-

WizardGrass and TownMap. Converting these two applications to Minueto was not

difficult, considering the simple nature of the demos. A complete description of these

applications can be found in section 6.2.1.

To gather the required data, 15 computers were chosen, all equipped with a variety

of processor, operating system and video hardware. Both demos were run on each

machine, both in fullscreen and in windowed mode. When first started, all the demos

showed large instabilities in frame rate. However, the frame rate was only recorded

after a few minutes, once it had stabilized.

54

6.7. Additional Benchmarks

6.7.2 Analysis

The first two tables of this section (6.1 and 6.2) contain the frame rate achieved by

both demos in windowed mode. The third table (6.3) also contains the frame rate

achieved by both demos, but in fullscreen mode. Please note that fullscreen mode

is not available under Linux, so fullscreen performance data is unavailable for that

operating system.

Benchmark machine Black Wiz-

ard Grass

Town Map

Imac, G4 800 Mhz, 512 Mb, Geforce 4 MX, Ma-

cOs X, JVM 1.4.2

30 27

IBook, G4 800 Mhz, 640 Mb, ATI Radeon 9200,

MacOs X, JVM 1.4.2

33 31

Powerbook, G4 1200 Mhz, 2048 Mb, Radeon

9700, MacOs X, JVM 1.5.0

66 64

G5 Tower, Dual 2500 Mhz, 3072 Mb, Geforce

6800 Ultra, MacOs X, JVM 1.4.2

133 124

Table 6.1: Frame rate (in frames per second) achieved while running BlackWizard-

Grass demo and TownMap demo in windowed mode (continued on next table).

Several conclusions can be drawn from the collected results :

• frame rate for fullscreen results are capped at 60 or 75 fps. This suggests that

the frame rate for an application in fullscreen mode is limited by the refresh

rate of the screen. This is not a problem since a frame rate higher than the

refresh rate of the screen is useless.

• The Athlon XP 2000+ equipped with the S3 Savage 2000 video card suffers from

poor performance, especially when compared to its Geforce 4 TI counterpart.

This would suggest that poor video hardware can have a significant impact on

55

6.7. Additional Benchmarks

Benchmark machine Black Wiz-

ard Grass

Town Map

Pentium 2 333 Mhz, 384 Mb, ATI Rage, Linux,

JVM 1.4.2

22 23

Pentium 3 733 Mhz, 512 Mb, Geforce 4 MX

(unaccelerated drivers), Linux, JVM 1.4.2

73 72

Athlon XP 2000+, 512 Mb, Geforce 4 TI, Linux,

JVM 1.4.2

225 195

Pentium 4 2660 Mhz, 512 Mb, Geforce 4 TI,

Linux, JVM 1.4.2

255 255

Athlon 64 3000+ , 1024 Mb, Geforce 5800 (un-

accelerated drivers), Linux, JVM 1.5.0

89 86

Celeron 500 Mhz, 512 Mb, Geforce 4 MX, Win-

dows, JVM 1.4.1

75 72

Pentium 3 733 Mhz, 512 Mb, Geforce 4 MX,

Window, JVM 1.4.2

108 105

Athlon XP 2000+, 512 Mb, Geforce 4 TI, Win-

dows, JVM 1.5.0

400 360

Athlon XP 2000+, 512 Mb, S3 Savage 2000,

Windows, JVM 1.4.2

127 122

Athlon 64 3000+, 1024 Mb, Geforce 5800, Win-

dows, JVM 1.5.0

425 400

Table 6.2: Frame rate (in frames per second) achieved while running BlackWizard-

Grass demo and TownMap demo in windowed mode.

56

6.7. Additional Benchmarks

Benchmark machine Black Wiz-

ard Grass

Town Map

Imac, G4 800 Mhz, 512 Mb, Geforce 4 MX, Ma-

cOs X, JVM 1.4.2

30 28

IBook, G4 800 Mhz, 640 Mb, ATI Radeon 9200,

MacOs X, JVM 1.4.2

31 29

Powerbook, G4 1200 Mhz, 2048 Mb, Radeon

9700, MacOs X, JVM 1.5.0

42 39

G5 Tower, Dual 2500 Ghz, 3072 Mb, Geforce

6800 Ultra, MacOs X, JVM 1.4.2

60 59

Celeron 500 Mhz, 510 Mb, Geforce 4 MX, Win-

dows, JVM 1.4.1

60 57

Pentium 3 733 Mhz, 512 Mb, Geforce 4 MX,

Window, JVM 1.4.2

73 72

Athlon XP 2000+, 512 Mb, Geforce 4 TI, Win-

dows, JVM 1.5.0

60 60

Athlon XP 2000+, 512 Mb, S3 Savage 2000,

Windows, JVM 1.4.2

48 48

Athlon 64 3000+, 1024 Mb, Geforce 5800, Win-

dows, JVM 1.5.0

60 59

Table 6.3: Frame rate (in frames per second) achieved while running BlackWizard-

Grass demo and TownMap demo in fullscreen mode.

57

6.7. Additional Benchmarks

Minueto. A Geforce 4 MX video card, which is a fairly inexpensive, is required

to effectively use Minueto.

• The Atlhon64 3000+ using unaccelerated drivers provided a very bad perfor-

mance under Linux. However, the Pentium 3 733 Mhz, using the same drivers,

offered a similar performance. This suggests that the performance of the Linux

unaccelerated drivers is capped.

• There seems to be a linear relation between frame rate and processor speed for

the MacOs X computers. This would suggest that the poor performance ob-

tained by the 800 Mhz MacOs X computers is caused, in part, by the processor.

Although it is already known that the Apple JVM is slower than the Sun JVM,

faster MacOS X computers do offer reasonable frame rates when using Minueto.

• The 1.2 Ghz Powerbook presented a surprisingly high (for MacOS X) frame

rate. This suggests that the Apple’s JVM 1.5 does offer an important increase

in Java2D’s speed.

58

Part III

Case Study: Winter 2005

Chapter 7

Student Evaluation

At the time of writing, the students of the Winter 2005 System Development

Project (COMP-361) class have successfully completed their game project and are

enjoying a well-deserved summer vacation. The results for this year’s game, Strategic

Conquest were very impressive. Although Strategic Conquest is different from last

year’s Naval Battle game, the increase in the overall quality of the projects is easily

noticed.

7.1 Student’s Platform Choices

The Java implementation of Minueto was completed at the end of December 2004,

just in time for the Winter 2005 term. Minueto was presented to the COMP-361

students during the third lecture, the two first lectures of the term being reserved for

the course introduction and the game description. Although the students were free

to use the technology of their choice, they were warned that technical support would

only be provided for Java. This was a practical decision, since actively supporting

multiple game development platforms would have been a heavy burden on both the

professor and his assistant.

In Winter 2004, only one team chose to use the provided game-specific GUI.

Among the other teams, half of them chose to use Java and the other half used

various other technologies (C++, Python, etc). This year, the adoption rate for the

60

7.2. Student’s Improvements To Minueto

Programming Language Software Development

Kits

Teams

2004

Teams

2005

Java Swing/AWT 5 1

Java Naval Battle GUI 1 N/A

Java Minueto N/A 8

C# DirectX 0 1

C++ DirectX 1 1

C++ DirectX (XBox) 1 0

C++ SDL 1 0

Python PyGame (SDL) 1 1

Table 7.1: Programming Languages and Software Development Kits used by student

during the Winter 2004 & 2005 term.

provided framework was astonishing (see table 7.1). A total of 8 teams chose to use

Minueto, a dramatic increase if compared to last year’s GUI. One other team chose to

build their custom Java graphic library, borrowing from Minueto’s code but adopting

a greater degree of compatibility with Swing. Two other teams chose to develop their

game using C++ and C#. Finally, as in 2004, one team chose Python as their game

development platform. Special mention should be given to one of the Minueto teams,

who also chose to use Python to develop the game server.

Minueto’s high adoption rate suggests that the framework successfully answers

students’ needs when developing their project.

7.2 Student’s Improvements To Minueto

The 2004 Naval Battle GUI did not properly address the students’ needs. The GUI

itself was poorly documented, so students had difficulties adapting it to their needs.

Although several teams did borrow code from the GUI to design their own interface,

61

7.2. Student’s Improvements To Minueto

most teams rewrote their game interface from scratch. This would suggest that stu-

dents prefer building their own GUI rather than adapting an existing one to their

needs.

Our experiences with Minueto and the 2005 class were very different. Among the

eight groups that chose to use Minueto, three of the groups used a modified version

of Minueto. Since Minueto’s source is commented and distributed with the SDK,

students can easily modify Minueto’s core components to better answer their needs.

The following subsections present some of the modifications that were done by the

students.

7.2.1 Alpha Channels

An image is composed of pixels, and each pixel has three color channels : red, green,

blue. The value of these three channels determines the color of that pixel. A pixel

can also have a fourth channel, the alpha channel, which determines the transparency

of that pixel. Graphic engines use this value to create partially transparent ghost-like

effects. Since the value of the alpha channel can vary from one pixel to another, differ-

ent parts of an image can have different transparency values. Because of performance

concerns, the alpha transparency model was not implemented in Minueto.

Minueto uses a bitmask transparency model. In other words, a pixel is either

opaque or completely transparent. Although ghost-like effects are impossible to

achieve with this technique, this transparency model is much faster to draw. Even

though Direct3D and OpenGL can be used to accelerate 2D drawing in Java (includ-

ing alpha transparencies), support for hardware acceleration is still experimental and

occasionally crashes the virtual machine.

Two teams modified the Minueto source code to enable the alpha transparency

model. Although performance under Windows was adequate, the frame rate on Linux

dropped to 1 fps when an OpenGL compatible graphic card was not available. In

addition, one of the teams had problems closing their MinuetoWindow when 3D accel-

eration was enabled. However, both teams were rewarded with beautiful transparency

effects.

62

7.2. Student’s Improvements To Minueto

Further examination of the performance impact of transparency models is required

to determine if/how alpha transparencies could be safely integrated into Minueto.

7.2.2 Swing Integration

Swing is a component of the Java Foundation Classes that simplifies the development

of applications with graphical user interfaces (GUI). It provides easy to integrate and

reusable UI components, such as text boxes, buttons, panels, etc. It is currently

impossible to insert a Swing component (such as a button) into a MinuetoWindow.

The Swing library is too slow to be used for game development. Even though Min-

ueto does internally use several Swing components as drawing surfaces, their painting

engine is disabled. In other words, Minueto replaces Swing’s painting engine with its

custom drawing engine. Although Swing components can be added to a MinuetoWin-

dow, they will not be painted properly. Further testing on this problem also revealed

compatibility problems between Swing and Java’s double buffering components.

The implementation of Strategic Conquest requires several UI components such

as buttons and text boxes. Currently, Minueto provides no tool to easily generate

and manage these. Some resourceful students avoided Minueto/Swing interaction

problems by placing the Swing components in a separate window. In addition, hooks

were added to MinuetoWindow so that they could interact with the underlying Swing

components. Another team tried to encapsulate MinuetoWindow’s drawing surface

into a JPanel and add it to a regular Swing window. That modification didn’t work

too well.

For the moment, Minueto and Swing just don’t work together. However, future

projects will most likely contain other UI components. Coding these by hand is an

unnecessary chore. More research is needed to either create generic UI components

for Minueto or improve Minueto/Swing compatibility.

7.2.3 Active Queue

As described in the previous chapter, Minueto uses a special queuing system that

allows it to record keyboard/mouse events in real-time and delegate their processing

63

7.2. Student’s Improvements To Minueto

to the main thread. This avoids the need for small short-lived individual threads

to handle each input event. However, a group of students decided, given the low

amount of input in their game, that they preferred an active input system. Thus,

they modified the mouse and keyboard handlers so that events would be processed

as they occured by individual threads.

Although the Minueto architecture discourages such kind of event handling, pro-

grammers with GUI development experience may be more comfortable with this kind

of event handing. A possible expansion to the Minueto queuing system would be to

create a single dedicated thread to continuously deal with input events. However, this

idea should be discouraged since it introduces concurrent programming concerns.

7.2.4 Keyboard Handler

When the keyPress or keyRelease methods from a MinuetoKeyboardHandler are

called, an integer representing the key (a key ID) is passed as a function parame-

ter . However, to translate the key ID to a character representation (from 59 to ‘a’),

a large inefficient switch statement is required. This was discovered when students

started implementing text boxes.

Ideally, the MinuetoKeyboardHandler should provide both the key ID and the

character representation of that key, if applicable. Currently, this change cannot

be done without breaking compatibility since the MinuetoKeyboardHandler interface

would need to be changed. Subsequently, this change is best left to the next major

version of Minueto (2.0?), where backward compatibility will be broken anyways.

To solve this problem in the current version of Minueto, some students modified

the MinuetoKeyboardHandler to return a Java KeyEvent object instead of a key id.

This allowed them to retrieve both the key id and the character representation when

a keyboard event was generated. Unfortunately, this modification cannot be applied

to the core component since it breaks Minueto’s encapsulation by incorporating Java

elements in the public interface.

As a temporary solution, a translate key function was added to the MinuetoKey-

board class. This function will translate a key id into a character representation and

64

7.3. Observation of Student Progression

Figure 7.1: Strategic Conquest, team Purple Monkey Screwdrivers

send that character back as a string. Although a bit slow, this function automates

the character transformation, thus avoiding the need to modify the handler.

7.3 Observation of Student Progression

Comp-361 students are required to attend weekly meetings with the class professor so

their progress can be monitored. Three months into the development of their projects,

students are called to a special meeting to present a “demo” version of their project.

During this “demo” meeting, students present a working version of their game with

a minimal set of features. Students then meet the professor a month later to present

the final version of their game.

Although the Minueto framework was introduced during the third lecture, stu-

dents started using the tool after the first lecture already. Only a few days later, a

65

7.3. Observation of Student Progression

Figure 7.2: Strategic Conquest, team Golden Balaika Mariachis

small Minueto demo application had already been posted on the class bulletin board

by a student. After the class presentation of Minueto, the number of groups using

Minueto doubled. Students also started sending comments and questions. This was

concrete proof that students were using the framework.

An important change in the weekly meetings was also noticed. In the previous

year, students often complained about the difficulty of developing their custom GUI.

Problems using Java/Swing were a big concern for the students. This is understand-

able, since Swing was never meant to be used for game development. The number

of technical complaints and problems dramatically decreased for the class of Winter

2005. Although some Minueto concerns did come up during the meetings, most were

diagnosed as incorrect or inefficient uses of Minueto and quickly solved. The only un-

resolved issue students encountered was the keyboard repetition problem described

in section 6.5.3.

66

7.3. Observation of Student Progression

Figure 7.3: Strategic Conquest, team Muff Busters

An increase in the quality of the projects was also noticed during the “demo”

presentations; the games looked more professional and polished. More importantly, all

the student’s projects met the minimum requirements for the demonstration. Last’s

year demonstration had no minimum requirements and some teams did not even

manage to present a working project. Hence, the 2005 students were able to develop a

better working product given the same amount of time. Given that the 2004 students

devoted much time to developing and debugging their GUI, we can deduce that

students using Minueto were able to concentrate their efforts on other tasks.

The final project presentations were a learning experience for the Minueto devel-

opment team. The creativity of some of the student’s projects was amazing. Several

of Minueto’s features had been used in ingenious ways, expanding our vision of Min-

ueto’s capabilities (see figure 7.1, 7.2, 7.3). Although the top projects from 2005 were

not necessarily superior to the top projects from the previous year, the quality of the

67

7.3. Observation of Student Progression

average projects had greatly increased. Furthermore, although some games did not

meet the final minimum requirements for this project, all the game projects did have

a functional user interface.

Although the student of Winter 2005 COMP-361 were free to use the tool of their

choice to make their game, a high percentage of the groups chose to use Minueto.

Very early into the projects, students sent questions and comments by email to the

Minueto development team. Although the development team could not accommodate

every feature requested by the students, the team was very helpful in explaining how

students could modify Minueto so it would better fit their needs. In addition, several

students sent emails to Minueto’s developers, thanking them for the large amounts

and the quality of the documentation that was available.

68

Chapter 8

Learning from 2004 and 2005

8.1 General Conclusions

Minueto was successfully tested by the students of the Winter 2005 COMP-361 Sys-

tems Development Project class. In addition, it was used by Marc Lanctot to develop

a data gathering tool/game for his research [Lan05]. Furthermore, at least two other

games have been implemented using Minueto.

Minueto was originally designed to reduce the learning curve of game development

and allow students to focus on the behavior of the game. The following sections

summarize Minueto’s impact on COMP-361 and offer some suggestions on improving

the course. Also, Minueto’s future is discussed; topics include change policies, the

role of expansion modules and future implementations of Minueto.

8.2 Impact Analyst

As previously mentioned in chapter 4, students from the 2004 course were asked what

were the most difficult tasks for the project (see table 4.1). Two thirds of the class

answered that most problems were related to project design and project management.

Given that the project is designed to evaluate software engineering and team-work

skills, this result was expected and desired. The other third of the class answered

69

8.2. Impact Analyst

GUI development as their most difficult task. This indicates a flaw in the design of

the course, since students should focus on the behavior of the game, not the interface.

Most difficult task Number of teams

Implementing the submarine unit 1

Network programming 3

Teamwork and code mergers 2

Building the GUI and programming the graphics 2

Table 8.1: Student feedback on most difficult task during the Winter 2005 project

The same question was asked to the students of the 2005 class (see table 8.1).

This year, network programming was considered one of the most difficult tasks of

the project. This is surprising since the network code required for Strategic Conquest

should have been fairly similar to the code required for last year’s Naval Battle project.

However, inter-application communication is one of the course goals. As such, it is

normal that the design of the network component for the game be a challenging task.

Teams were also asked which development tools they used for their project. Apart

from the traditional programming IDE tools such as Visual Studio and Eclipse, there

was an impressive increase in the number of teams that used a source revision control

system such as Subversion. Some teams also used a bug tracking system or a Wiki

to simplify communication between team members. This increase in collaborative

tools could explain the why so few 2005 groups reported problems with teamwork

and merging their code.

Only two groups answered that graphic programming was the most difficult part

of the project. This represents an important improvement over last year’s results.

However, a deeper analysis is required to determine if the difficulties were caused by

the tool they used, or by the complexity of their GUI.

One of these two teams decided not to use Minueto. Instead, they tried to create a

Minueto/Swing hybrid where Minueto-like components could be used to draw images

and Swing components could be used for the GUI interface. The team experienced

70

8.3. Course Improvements

several problems, many of them similar to those experienced by Minueto’s develop-

ers early in the project. They were unable to complete this Minueto/Swing engine

because of lack of time and resources. Although they did have a working prototype,

their engine was a bit unstable and functioned only under the Windows operating

system.

The other team created an artistic marvel that showcased Minueto’s possibilities.

It is easy to understand that graphics was their most difficult task, given the shear

complexity of their animation system. Although their problem is not caused by

Minueto, better infrastructure (such as tutorials or expansion modules) could be

created to help students build and manage complex animation systems.

8.3 Course Improvements

Although the students of the 2005 class were all successful in implementing Strategic

Conquest, the final testing of the game revealed that focus should be added on two

software engineering topics : user interface design and usability testing.

After playing each team’s implementation of the game for twenty minutes, it was

obvious that several teams had not properly tested or played their games. Although

the game themselves were not flawed, their user interface made the game-play slow

and unintuitive. Some teams had complex menu systems where several clicks were

required to accomplish basic tasks. Other teams required players to know a large

amount of keyboard shortcuts, without any built-in reminder/help system in the

game.

Many of these problems could have been avoided if user interface design and

usability testing had been taught in class.

8.3.1 User Interface Design

An application must provide means for users to interact in ways that are intuitive and

natural [Woo97]. Although building the user interface for a game can be a daunting

experience, it is important that the interface be designed from a player’s perspective,

71

8.3. Course Improvements

not a software engineer’s. Students should not forget that the video game industry

has decades of experience with user interfaces that work. For many types of games,

there are traditional user interfaces that players have come to expect.

Even if each game requires a distinct user interface, students should analyze the

user interfaces used by similar games. Strategy games such as Warcraft 3, Ages

of Empires, Total Annihilation and Red Alert all have similar user interfaces that

would be well adapted for Strategic Conquest. Although the students should not feel

constrained to build their game using the same kind of interface, they should be aware

that variations from a proven user interface require additional usability testing. A

one hour course on the different user interfaces of video games would be a valuable

asset to the students.

8.3.2 Usability Testing

Steve Krug’s first law of usability is “Don’t make me think!” [Kru00]. He believes

that a well design interface should be self-evident to a user. Although this goal might

seem unrealistic for a video game, many video games can be played without having

to read the game manual. The usability of a game can be evaluated through usability

testing.

The people working on a project are usually worst qualified to evaluate the us-

ability of their software. Their intricate knowledge of the project prevents them from

determining if their application is self-evident. Ideally, usability testing is done using

a small random group of people with no prior knowledge of the application. Students

can usually achieve this by asking a group of their friends to play the game. Students

can then observe how the testers use their application and learn how to improve it.

Proper usability testing (both the interactions with the testers and interpreting the

results) can be tricky and requires some training. Students would benefit greatly from

a one hour course on usability testing.

72

8.4. Minueto’s Evolution

8.4 Minueto’s Evolution

Minueto is a game development architecture that is currently implemented in Java.

Given that the Minueto name is used to describe both the platform independent ar-

chitecture and the Java implementation, discussion about changes in Minueto can be

confusing. Because there are currently no plans to port Minueto to another program-

ming language, changes and improvements on the architecture are directly carried to

the Java implementation. However, the roles and policies described in the following

sections should be interpreted at the architecture level.

In the following sections, particular emphasis is placed on the difference between

Minueto’s core component (which only handles keyboard/mouse input and drawing on

the screen) and the expansion modules (that provide all other functionalities). These

two components have different roles, and thus, two very different design philosophies.

8.4.1 Change Policies for the Core Component

If compared to other game development frameworks, Minueto’s core component has a

surprisingly small number of features. This design choice is motived by the desire to

keep the framework as simple as possible. Thus, students are able to learn Minueto

faster given the relatively small size of the API.

Such a design philosophy introduces some interesting design challenges: new fea-

tures must add functionality while minimizing the increase in complexity of the frame-

work. The challenge lies in determining which changes are worth the increase in

complexity.

Minueto is not a game specific framework. Its core components focus on gathering

input and displaying output. As such, changes that apply to specific types of games

should be avoided. One common change that is requested by the students is the ad-

dition of a Sprite class. However, sprites are game specific since their implementation

varies from one type of game to another.

Before adding new features to Minueto’s core component, the following questions

must be considered:

73

8.4. Minueto’s Evolution

• Is this change specific to a particular type of game?

• Is the change specific to a particular implementation?

• Do the changes affect components other than the core?

• Will this change benefit a specific group of users?

• Can the new functionalities be achieved with the existing functionalities?

• Will this change affect existing Minueto applications?

• Will this change decrease Minueto’s performance?

A “yes” answer to any of these questions indicates that the change should not be

implemented on Minueto’s core component.

8.4.2 The Role of Expansion Modules

Since Minueto’s expansion modules provide all other functionalities beyond what is

provided by the core component, they have a crucial role in Minueto’s future. As we

have already mentioned, extreme measures are taken to keep the core component as

simple as possible. However, the expansion modules are bound by no such limitations;

they can be very complex or game specific. They are designed to simplify tasks

commonly found in specific types of games. Section 5.4 describes several components

which could greatly extend Minueto’s functionalities.

Expansion modules are never bundled with the core SDK. As such, they do not

affect Minueto’s initial learning curve since they need be installed separately. Expan-

sion modules should be available as a separate download, although bundling several

them into an expansion pack is acceptable. Installation of expansion modules should

be simple and, ideally, similar to the installation of the core component.

74

8.5. Looking to the Future

8.4.3 The Next Minueto

Most of the changes required in Minueto can be found in Section 6.4. Some of these

changes occur at the implementation level, like removing the singleton restriction on

the MinuetoWindow class. Other changes, such as the much needed modification to

MinuetoKeyboardHandler, affect Minueto at the architecture level.

However, the most important new feature is the addition of efficient and reusable

GUI components (buttons, text boxes, etc.). This could be achieved by either inte-

grating Swing components or building the components with Minueto objects. The

latter solution would be preferable because it would be implementation independent.

This feature would greatly improve student productivity since students spend a lot

of time coding these components themselves.

A non-essential, but useful improvement, would be to automate the regression

testing infrastructure. Manually running all the regression tests requires several hours,

especially when running them on multiple virtual machines and on multiple platforms.

8.5 Looking to the Future

During Summer 2005, Minueto 1.0 will be released to the Java Game Development

community. It will also be announced on various open-source software news sites

such as Freshmeat.net. At the same time, developers will be working on the second

version of Minueto, addressing concerns outlined in the previous section. Minueto will

also be introduced to the academic community as a game development learning tool

for Java-centric environments. It is our hope that Minueto contributes to both the

game development community and the Computer Science undergraduate community,

making game development more accessible.

75

Appendix A

Minueto SDK Readme

The following is the content of the Readme file provided with the Minueto software

development kit.

A.1 Minueto Readme

Minueto - The Game Development Framework

Copyright (c) McGill University, 2004. All right reserved.

3480 University Street, Montreal, Quebec H3A 2A7

Minueto is a multi-platform 2D Graphic API which is easy to learn and use.

Minueto also addresses other game programming concerns such as Input from Key-

board/Mouse..

This library is free software; you can redistribute it and/or modify it under the

terms of the GNU Lesser General Public License as published by the Free Software

Foundation; either version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public

License for more details.

76

A.1. Minueto Readme

You should have received a copy of the GNU Lesser General Public License along

with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place,

Suite 330, Boston, MA 02111-1307 USA.

Minueto is available in two different packages. The current version of Minueto is

0.6.0.

• MinuetoSDK 0.6.0 jdk1.4.2.zip : The Minueto software development kit (exam-

ples, source, doc) with the compiled runtimes for JDK 1.4.2.

• MinuetoSDK 0.6 jdk1.5.zip : The Minueto software development kit (examples,

source, doc) with the compiled runtimes for JDK 1.5.

A.1.1 System Requirement

• Minueto has been tested using JDK 1.4.2 and JDK 5.0 (1.5).

• Minueto runs on the Windows XP, MacOs X and Linux platform.

• A 500 Mhz machine is sufficient for development purposes.

• A 1 Ghz machine is required to run a game that requires a fast framerate.

A.1.2 Installation

Download the Minueto SDK (either the 1.4.2 or 1.5 version, depending on which JDK

version you use). Unzip the Minueto package using your favorite zip program. On

Linux, you can use the following command :

unzip MinuetoSDK_0.6.0_jdk1.4.2.zip

Once you unzip the full package, you’ll find the following directory structure.

|- readme.txt : This file

|- license.txt : Minueto’s licence (LGPL)

|- changelog.txt : Changes in Minueto

77

A.1. Minueto Readme

|- todo.txt : Things I should do in the near futur

|- build.xml : Allows you to compile Minueto

|---\ lib : Minueto’s runtime jar

|---\ api : Minueto’s api documentation

|---\ samples : Multiple examples to get you started

|---\ Minueto : Minueto’s source

If you want to start developping with Minueto, don’t forget to add Minueto.jar in

the lib directory to your classpath. You can find more information on changing your

classpath at :

http://www.dynamic-apps.com/tutorials/classpath.jsp

A.1.3 Samples

You will find in the sample directory several examples on how to use Minueto. Each

example has a make.sh and a make.bat shellscript that you can use to build and run

the sample. Please note that both scripts expect the javac and java command to be

in your path.

A.1.4 Documentation

The API to use Minueto can be found in the API directory. You can also find a lot

of information on Minueto at

http://www.cs.mcgill.ca/~adenau/minueto/

A.1.5 Compiling

You can compile a new Minueto.jar runtime using Ant. From the sdk root directory:

ant all-jdk14

recompiles Minueto for use with JDK 1.4.2.

78

A.1. Minueto Readme

ant all-jdk15

will recompile Minueto for use with JDK 1.5.

A.1.6 Contact

Minueto is a project of the McGill Software Engineering Lab.

<http://www.cs.mcgill.ca/~joerg/sel/sel.html>

Questions related to Minueto should be directed to Alexandre Denault.

<alexandre.denault@adinfo.qc.ca>

79

Appendix B

Minueto Code Samples

The following appendix contains a description of the samples provided with the

Minueto software development kit. Since samples are also used for regression testing,

it can be assumed that a sample used to demonstrate a specific feature should also

be used to test that same feature.

B.1 CircleDemo

This sample demonstrates how to build circle objects. The circles have different sizes

and can be either empty or filled.

B.2 CropDemo

This sample demonstrates how the crop function can be used to create new images

by copying a portion of an existing image.

B.3 FramerateDemo

This sample demonstrates how timers can be used to measure the frame rate of a

MinuetoWindow.

80

B.4. HandlerDemo

B.4 HandlerDemo

This sample demonstrates how input from the keyboard and mouse can be captured.

Captured events are printed to the console.

B.5 HandlerDemo2

This sample also demonstrates how input from the keyboard and mouse can be

captured. However, this sample allows the user to hide/show the cursor and en-

able/disable the MouseHandler. Also, a box and a large X is drawn in the window

to determine if Minueto is correctly calculating the window margins.

B.6 HandlerDemo3

This sample also demonstrates how input from the keyboard and mouse can be cap-

tured. However, special focus is given to the mouse move event. A cross is drawn at

the location of the cursor and moves when the cursor is moved.

B.7 Helloworld

This sample demonstrates how text can be drawn in the exact center of the screen.

B.8 ImageDemo

This sample demonstrates how several small images can be composited together to

form a large, more complex image.

81

B.9. LineBenchmark

B.9 LineBenchmark

This sample calculates how many lines Minueto can draw on screen while maintaining

an average framerate of 30 fps. This sample can be used to benchmark the imple-

mentation of Java’s internal drawing functions.

B.10 LineDemo

This sample demonstrates how several lines can be drawn over a blank MinuetoImage.

B.11 LoadingFileDemo

This sample demonstrates how an image can be loaded from disk and drawn on screen.

B.12 RectangleDemo

This sample demonstrates how to build rectangle objects. The rectangles have dif-

ferent sizes and can be either empty or filled.

B.13 RotateDemo

This sample demonstrates how an image can be loaded from disk and continually

rotated as it is drawn on screen.

B.14 RotateDemo2

This sample demonstrates that the center of rotation of an image is in the center

of that image. This sample was written to test if images were properly rotated and

centered.

82

B.15. RotateDemo3

B.15 RotateDemo3

This sample demonstrates that the size of an image might increase when rotated.

This sample was written to test if the size of the image was properly increased when

it was rotated.

B.16 ScaleDemo

This sample demonstrates how an image can be loaded from disk and continually

scaled as it is drawn on screen.

B.17 ScaleFlipDemo

This sample demonstrates the flip function, which is internally a subcase of the scale

function.

B.18 TextDemo

This sample demonstrates the difference between normal text and anti-aliased text.

It is also a good example to learn how to draw text.

B.19 TextDemo2

This sample demonstrates how text input can be handled. Although simple, this

example provides a good starting block to implement a text box.

B.20 TriangleRover

This sample demonstrates how to implement 2D movement. This sample also demon-

strates a work-around for the keyboard repeat bug under Linux.

83

B.21. TriangleRover2

B.21 TriangleRover2

This sample demonstrates how simple it is to improve the visuals of the first Trian-

gleRover sample by loading images.

84

Appendix C

Minueto Tutorials

The following appendix contains a description of the tutorials (also called Howtos)

found on the Minueto website.

C.1 How do I run the samples?

The Minueto SDK package contains a collection of over 20 samples. This tutorial

teaches a student how to use the provided make scripts to compile and run these

samples.

C.2 How do I compile and run an application with

Minueto?

To compile an application that uses the Minueto framework, the Minueto.jar library

file must be declared in the Java Classpath. This tutorial teaches a student various

ways Minueto.jar can be inserted into the Classpath.

85

C.3. How do I create a game Window?

C.3 How do I create a game Window?

In Minueto, the Window is the canvas where images are drawn. This tutorial teaches

the student how to create a window and how to display it.

C.4 How do I load and draw an Image?

An image is a basic construction block of a Minueto application. This tutorial teaches

the student how to create a MinuetoImage from an existing file and how to draw that

image on the screen.

C.5 How do I draw a line?

In Minueto, lines can be arbitrarily drawn over any image. This tutorial teaches the

student an efficient technique for using the drawLine method.

C.6 How do I draw a rectangle or a circle?

With Minueto, a new MinuetoImage can be created with the image of a rectangle

or a circle. This tutorial teaches the student how to create these images and how to

draw them.

C.7 How do I write text on an image or the screen?

To write a string on the MinuetoWindow, an image of that string must first be

created. This tutorial teaches the student how to create the image of a string and

how to display it on the screen.

86

C.8. How do I get input from the keyboard?

C.8 How do I get input from the keyboard?

Minueto uses a queue-based messaging system with event handlers. This tutorial

teaches the student how to implement the keyboard event handler interface and how

to register that implementation with the event queue.

C.9 How do I get input from the mouse?

Capturing input from the mouse is fairly similar to capturing input from the keyboard.

This tutorial teaches the student how to implement the necessary interface and how

to register it.

C.10 How do I measure time using Minueto?

Minueto application can measure time using a provided timer class. This tutorial

teaches the students how timers can be used to measure the time required to draw

lines on the backbuffer.

C.11 How do I scale/rotate an image?

MinuetoImages can be scaled or rotated using pre-defined methods. This tutorial

teaches the student how to cache the results of a rotated image and how to smoothly

rotate an image.

87

Appendix D

Glossary

• 2D : 2 Dimensions : Defines a 2 dimensional environment composed of height

and width.

• 3D : 3 Dimensions : Defines a 3 dimensional environment composed of height,

width and depth.

• AI : Artificial Intelligence : Intelligence exhibited by any manufactured (i.e.

artificial) system.

• API : Application Programming Interface : Set of rules (functions) that define

how a piece of software can be used by other softwares.

• AWT : Abstract Windowing Toolkit : Java’s platform-independent toolkit for

graphic user environments (GUI).

• CORBA : Common Object Request Broker Architecture : Standard that allows

components/services written in different languages/platforms to interact.

• CPU : Central Processing Unit : Central unit of a computer, carries out all the

computations.

• FPS : Frames per second : Unit of measure, represents the number of updates

sent to the monitor every second.

88

• Ghz : Giga Hertz : Unit of measure, represents 1,000,000 hertz (Hz)

• GIF : Graphics Interchange Format : Bitmap image format, allows for trans-

parencies, color palettes and animation.

• GNU : GNU’s Not Unix : Recursive acronym, software license for free software.

• GUI : Graphical User Interface : Interface to interact with computers thought

the use of icons and images.

• Hz : Hertz : International unit of measure for frequency, represents number of

events occurring per second.

• IDE : Integrated Development Environment : Complete suite of software tools

that allows a programmer to develop new applications.

• JDK : Java Development Kit : Collection of tools distributed by Sun Microsys-

tems to allow programmers to create Java applications.

• JPEG : JPEG File Interchange Format : Image format for photographic images

that uses a lossy compression format.

• JVM : Java Virtual Machine : Software or hardware machine that runs Java

code.

• KDE : K Desktop Environment : Desktop environment for Unix and unix-like

systems.

• MIDI : Musical Instrument Digital Interface : Communication standard for

musical notes that allow music instruments and computers to exchange infor-

mation.

• MMOG : Massively Multiplayer Online Game : Video/computer game with

several thousands of players sharing a persistent state environment.

• MP3 : MPEG-1 Audio Layer 3 : Encoding format for music using a lossy

compression format.

89

• NPC : Non-Player Character : Character in a game whose actions are not

controlled by a player.

• OGG : Ogg : Open source multimedia container format for video and audio.

• PNG : Portable Network Graphics : Open source bitmap image format, created

to replace GIF (which requires a patent license to use).

• RGB : Red, Green, and Blue : Color model where red, green and blue light can

be combined to create new colors.

• RGBA : Red, Green, Blue and Alpha : Color model similar to RGB, but adds

an Alpha component that determines how transparent (ghost-like) a color is.

• RMI : Remote Method Invocation : Java programming interface that allows

programmers to call methods on remote objects. Similar to CORBA.

• SDK : Software Development Kit : Domain specific collection of tools that allow

programmers to create software for that domain.

• TCP/IP : Transmission Control Protocol / Internet Protocol : Communication

protocol that allow two computers to interchange data. TCP/IP is the main

protocol used by the Internet.

• X11 : X Window System : Window system for Unix and unix-like operating sys-

tem. Provides basic windowing mechanism and is further enhanced by desktop

environments such as KDE.

• XML : Extensible Markup Language : Flexible language that allows the def-

inition of a special purpose language for long-term storage or transmission of

data.

90

Bibliography

[AL00] James H. Andrews and Hanan Lutfiyya. Experience report: A software

maintenance project course. Thirteenth Conference on Software Engi-

neering Education and Training, page 8, March 2000.

[AM03] Maria Isabel Alfonso and Francisco Mora. Learning software engineering

with group work. Sixteenth Conference on Software Engineering Educa-

tion and Training, March 2003.

[ARA04] Admissions, Recruitment, and Registrar’s Office (ARR). Undergraduate

Course Calendar. McGill University, 2004.

[Chu99] Doug Church. Formal abstract design tools, game developer.

http://www.gamasutra.com/features/19990716/design tools 01.htm,

1999.

[DHZS00] Birgit Demuth, Heinrich Hussmann, Steffen Zschaler, and Lothar

Schmitz. A framework-based approach to teaching oot: Aims, implemen-

tation, and experience report: A software maintenance project course.

Thirteenth Conference on Software Engineering Education and Training,

page 11, March 2000.

[DS03] Crespo Dalmau Daniel Sanchez. Core Techniques and Algorithms in

Game Programming. New Riders, 2003.

91

Bibliography

[ETC05] CM Entertainment Technology Center. Current projects.

http://www.etc.cmu.edu/project subpages/projects listing.html, 2005.

[FBK+01] Theodore Frick, Elizabeth Boling, Kyong-Jee Kim, Daniel Oswald, and

Todd Zazelenchuk. Software developers’ attitudes toward user-centered

design. 24th National Convention of the Association for Educational

Communications and Technology, November 2001.

[fCT05] Institute for Creative Technologies. Ict games project.

http://www.ict.usc.edu/disp.php?bd=proj games, 2005.

[FvDFH97] Foley, van Dam, Feiner, and Hughes. Computer Graphics Principles and

Practice, Second Edition in C. Addison Wesley, 1997.

[GKPS03] Michael Gnatz, Leonid Kof, Franz Prilmeier, and Tilman Seifert. A

practical approach of teaching software engineering. Sixteenth Conference

on Software Engineering Education and Training, page 9, March 2003.

[GS02] Garner and Stuart. Reducing the cognitive load on novice programmers.

Association for the Advancement of Computing in Education (AACE),

page 7, June 2002.

[Haa04a] Chet Haase. Buffered image as good as butter.

http://weblogs.java.net/blog/chet/archive/2003/08/bufferedimage a.html,

2004.

[Haa04b] Chet Haase. Buffered image as good as butter, part ii.

http://weblogs.java.net/blog/chet/archive/2003/08/bufferedimage a 1.html,

2004.

[HK73] Simon H. and Gilmartin K. A simulation of memory for chess positions.

Cognitive Psychology, 1973.

[IH02] Toru Iiyoshi and Michael J. Hannafin. Cognitive tools and user-centered

learning environments: Rethinking tools, functions, and applications.

Association for the Advancement of Computing in Education, June 2002.

92

Bibliography

[III00] Richard Rouse III. Designing design tools, gamasutra.

http://www.gamasutra.com/features/20000323/rouse pfv.htm, 2000.

[Kre02] Bernd Kreimeier. The case for game design patterns, gamasu-

tra. http://www.gamasutra.com/features/20020313/kreimeier pfv.htm,

March 2002.

[Kru00] Steve Krug. Don’t Make Me Think: A Common Sense Approach to Web

Usability. New Riders Press, 2000.

[Lan05] Marc Lanctot. Adaptive virtual environments in modern multi-player

computer games. Master’s thesis, McGill University, 2005.

[Mic99] Sun Microsystems. Java code conventions.

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html,

1999.

[Mic00] Sun Microsystems. How to write doc comments for the javadoc tool.

http://java.sun.com/j2se/javadoc/writingdoccomments/, 2000.

[Moo05] Lynn Moore. Ubisoft expansion to create 1,000 jobs, quebec offers $22

million intax credits grants. The Gazette, Montreal, February 2005.

[oAGG05] The University of Alberta GAMES Group. Scriptease,

a scripting language for computer role-playing games.

http://www.cs.ualberta.ca/ script/, 2005.

[oCS05] McGill School of Computer Science. Undergraduate academic programs.

http://www.cs.mcgill.ca/undergraduate/programs.html, 2005.

[Pau04] Randy Pausch. An academic’s field guide to electronic art, observations

based on a residency in the spring semester of 2004. Carnegie Mellon

University, 2004.

93

Bibliography

[PW02] Lothar Pantel and Lars Wolf. On the suitability of dead reckoning

schemes for games. First Workshop on Network and System Support

for Games (NetGames2002), 2002.

[Ruc03] Rudy Rucker. Software Engineering and Computer Games. Addison

Wesley, 2003.

[SW04] Scott Schaefer and Joe Warren. Teaching computer game design and

construction. Computer-Aided Design, 36(14), December 2004.

[W.94] Caroll W. Using worked examples as an instructional support in the

algebra classroom. Journal of Education, 1994.

[Wal02] Mark H. Walker. Strategy gaming: Part

v – real-time vs. turn-based, gamespy.

http://archive.gamespy.com/articles/february02/strategygames05/,

February 2002.

[Woo97] Larry E. Wood. User Interface Design: Bridging the Gap from User

Requirements to Design. CRC Press, 1997.

94

