
The Perils of Using Simulations to
Evaluate Massively Multiplayer Online Game Performance

Alexandre Denault
School of Computer Science, McGill University

Montreal, QC H3A 2A7, Canada
alexandre.denault@mail.mcgill.ca

Jörg Kienzle
School of Computer Science, McGill University

Montreal, QC H3A 2A7, Canada
Joerg.Kienzle@mcgill.ca

ABSTRACT
To test and benchmark Massively Multiplayer Online Games
(MMOGs) requires hundreds, if not thousands of human
players. Given this impracticality, many researchers sub-
stitute experimentation with simulation. However, when in-
vestigating performance and scalability issues, simulated ex-
periments often yield results that heavily depend on the ex-
perimental setup. This paper critically reflects on the use of
simulation to conduct experiments in MMOGs. Using Mam-
moth, a MMOGs research framework, performance measure-
ments such as CPU usage, memory usage and used network
bandwidth are collected while running the same game sce-
nario using five different simulation setups. The results are
analyzed, and the discovered differences are discussed. The
paper concludes that experiments which are aimed at mea-
suring the performance of a MMOGs using simulations must
be designed very carefully, especially if they are run on a sin-
gle machine.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—performance mea-
sures; C.2.4 [Computer Communication Networks]: Dis-
tributed Systems, Distributed Applications

General Terms
Simulation, Performance, Massively Multiplayer

Keywords
Simulation of Games, Performance Measurements, Design
and Implementation of Massively Multiplayer Online Games

1. INTRODUCTION
In the last decade, the video game industry has shown un-

paralleled growth, both in revenue and in development com-
plexity. With the advent of the Internet, multiplayer and
massively multiplayer games have become more and more

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DISIO 2010 March 15, Torremolinos, Malaga, Spain.
Copyright 2010 ICST, ISBN 78-963-9799-87-5.

popular. Compared to a traditional multiplayer game in
which usually up to 16 players play a relatively short-lived
game, Massively Multiplayer Online Games (MMOGs) offer
the possibility for thousands of players to play together in a
persistent world.

The biggest challenge in MMOGs is scalability : the aim
is to allow as many players as possible to play together in
the same virtual world. Presenting a consistent view of the
virtual world to all players in real-time is difficult, because
the machines of the players can be located anywhere on the
Internet. As a result, the quality of the network connec-
tion to individual nodes varies: some connections exhibit a
higher latency than others, meaning that it takes more time
for a message to reach its destination. Bandwidth, i.e. the
maximum throughput of data to and from a given node, is
also limited, and varies depending on the quality of the con-
nection. Finally, any one machine on the network has itself
limited processing power and memory.

Given the nature of a MMOG, to accurately conduct ex-
periments to measure the performance of an MMOG imple-
mentation, hundreds of human players would be required.
This is, of course, unpractical, especially if repeated ex-
periments are to be conducted. Thus, it is common to
run experiments where the players are simulated [18, 21].
Player behaviour, also called Artificial Intelligence (AI) in
computer games, is usually programmed using some sort of
scripts [19], or even modelled using a graphical modelling
notation [12,15,23].

Ideally, during an experiment, each of the AI-controlled
players should be connecting to the game just like human
players would, i.e. from a separate computer. Unfortunately
this requires hundreds of computers, which, again, may be
unpractical for several reasons. First of all, the researcher
running the experiment must have access to such a signifi-
cant number of machines. Second, the researcher must find a
way to automate the starting of the game on each of the ma-
chines, since physically launching the game on each player
machine for each experiment would be prohibitively time
consuming.

Because of this, many researchers turn to simulations in
order to conduct MMOG experiments. While this drasti-
cally simplifies the effort it takes to run the experiments,
great care must be taken to ensure that the obtained mea-
surements indeed reflect the ”real-world”, i.e. that they cor-
rectly reflect the behaviour of a real MMOG game instance.
As for commercial MMOGs, very little information is avail-
able on how game companies test the scalability and perfor-
mance of the game architecture, algorithms and techniques



they use in their games. However, discussions with MMOG
providers seem to indicate that performance is often eval-
uated experimentally by allowing a limited set of users to
play a “beta” version of the game for free.

This paper critically reflects on the use of simulated ex-
periments in the context of MMOGs, in particular when the
experiments are aimed at evaluating game performance and
server scalability. Section 2 presents related work that uses
simulations in the context of MMOGs. Section 3 introduces
Mammoth, the MMOGs research framework we used to con-
duct our experiments for this paper. Section 4 describes the
different experimental settings we used to evaluate the per-
formance of Mammoth, and presents the gathered measure-
ments. Section 5 reflects on the obtained results and the
last section draws some conclusions.

2. RELATED WORK
The idea of creating a distributed game infrastructure is

decades old, with works such as [10] formally introducing
the concept. This particular work introduces Mimaze, a
distributed game that leverages multicasting for communi-
cation. The paper introduces many key issues, such as state
inconsistencies and the possibility of cheating. However, Mi-
maze did not deal with scalability issues and was thus limited
to 25 players.

Since then, there has been no shortage of work propos-
ing distributed architectures for games on a massive scale
[2, 3, 6, 7, 11, 14, 16] . Several of these ideas are based ei-
ther on Pastry [22], which describes a communication in-
frastructure for large scale Peer-to-Peer (P2P) systems, or
Mercury [4], which proposes a publish/subscribe infrastruc-
ture that could be used for large scale games.

Unfortunately, very few of these distributed architectures
were tested on a large number of nodes. For example, [17]
doesn’t describe any environment setup, leading us to be-
lieve that the results are purely simulated on a single node.
[2] also lacks an environment description, but cites the use of
micro benchmarks to estimate the maximum capacity of the
framework. On the other hand, [7] describes an experimen-
tal setup, but the experiments were run on only 6 machines.

As mentioned previously, several of these architecture are
built on top of Pastry, more specifically, FreePastry [1].
Both [16] and [11] were benchmarked using the simulator
provided with FreePastry, creating several thousand nodes
on a single machine. [8] describes a similar scenario, creat-
ing traces for 6000 players and executing them on a single
machine simulator. [24] describes how the realism of simu-
lated benchmarks can be be improved by introducing artifi-
cial network delays (lag). For example, experimentation has
shown that slowing down nodes by 10% in a P2P messaging
system can increase the transmission latency from 300ms to
as much as 800ms.

Performance measurement and evaluation can also be done
at lower layers of architecture, such as the network layer. For
example, the tools provided by OPNET [20] can be used to
simulate and evaluate new network protocols. In fact, there
is no shortage of network simulation tools currently available
on the market. However, the quality of a network simula-
tion relies mainly on the quality of the network trace used as
input. This network trace can be generated by user experi-
mentation, but is often generated using a higher-level game
simulation.

Although simulations can be used to evaluate certain char-

Figure 1: Screenshot of Mammoth

acteristics of a MMOG implementation, it does not replace
testing and benchmarking using a large number of players.
[21] proposes a solution to this by using computer-controlled
(AI) players. This has the advantage of closely reproduc-
ing game conditions without the unpredictability of real hu-
man players. Possible behaviours for such AI players can
be found in [18], where actions are decided using either a
greedy approach, Markov chains or hierarchical plans. [3] il-
lustrates a successful use of agent-based benchmarking, by
using unmodified Quake II bots (computer controlled play-
ers) to generate load to evaluate the performance of their
distributed Quake II servers.

3. MAMMOTH
Mammoth is a MMOGs research framework. It was cre-

ated as a collaborative project between a group of McGill
professors and students in early 2005, and has evolved con-
siderably during the last 4 years. Its goal is to provide an
implementation platform for academic research related to
multiplayer and MMOGs in the fields of distributed systems,
fault tolerance, databases, networking, concurrency.

In Mammoth players take control of a game character, also
called an avatar. A game session consists of moving around
in a virtual world and interacting with the environment by
executing actions (see figure 1). Basic building blocks of such
actions are, eġ,̇ moving the avatar, picking up or dropping
items, or communicating with other players.

In multiplayer and MMOGs, in order to provide a shared
sense of space among players, each player must maintain a
copy of the (relevant) game state on his computer. When
one player performs an action that affects the world, the
game state of all other players affected by that action must
be updated. Different strategies for the distribution of the
game state can have a profound impact on the scalability,
consistency and performance of the game.

Since Mammoth is specifically designed for experimenta-
tion with different distribution approaches, Mammoth de-
fines an intuitive object-based interface between the game
layer and the framework components that handle distribu-
tion. All game state is encapsulated in game objects, which
are objects that provide operations to manipulate the state
in a consistent way. The developer then proceeds to map



game objects to replicated objects, an abstraction provided
by the Mammoth replication engine. Whenever a player
needs to access the game state encapsulated in a replicated
object, a copy of the object – a replica – is created on the
player’s machine. Read operations that are called on the
game object are executed on the state of the replica. Mod-
ifying operations, however, cannot be executed locally for
consistency reasons. They are forwarded to a specially des-
ignated replica called the master, which executes the modi-
fying operation and then broadcasts the new state to all the
replicas.

This remote method invocation is completely transparent
for the game developer, which is not only convenient, but
also allows Mammoth to migrate a master from one node
to another node for load balancing, fault tolerance, or cheat
prevention reasons. The interested reader is referred to [9]
for further details on the replicated objects technology in
Mammoth, such as how it addresses interest management
and dead reckoning.

3.1 Mammoth’s Flexible Architecture
In order to allow researchers to easily conduct experi-

ments, the Mammoth framework has been designed as a
collection of collaborating components that each provide a
distinct set of services. The components interact with each
other through two types of well-defined interfaces, engines
and managers. Engines are core components that can be
completely replaced to experiment with alternative imple-
mentations. Managers are components designed to manage
multiple implementations of a given algorithm or strategy.

For example, there are currently 4 different network en-
gine implementations that can be used for communication
within Mammoth. The SternNetworkEngine is an engine
that implements TCP/IP based communication using a star
topology, where one node is designated as a hub which takes
care of forwarding and broadcasting messages. ToileNet-
workEngine implements a fully connected network topol-
ogy, and Postina implements a dynamic Peer-2-Peer net-
work topology using Pastry [22]. FakeNetworkEngine is a
network engine implementing communication within a sin-
gle process using a shared memory structure. The use of
the Factory design pattern [13] makes it possible to switch
engines without modifying any code.

An example of a manager is the non-player character (NPC)
manager, which can be used to simulate player behaviour.
The NPC manager allows game designers to write code, also
named an agent, that takes control of an avatar and exe-
cutes actions just like a human player would. Many dif-
ferent control algorithms have been implemented, such as
RandomWanderer, ItemGatherer, Follower, WaypointVisi-
tor, etc. Through a configuration file, the developer can
specify which control algorithm should control which avatar.

Finally, the core of a Mammoth process is the Node object.
When a Mammoth process starts up, it always creates a
Node instance. Subsequently, different tasks are assigned to
the node. For example, a graphical Mammoth client that
humans can use to play the game is created by assigning the
JMonkeyGraphicalClient task to a node. A simple server
component can be created by assigning to a node the task to
manage all the master objects in the game world. To create
an computer-controlled player, the NPC Controller task is
assigned to a node object. The Webmonitor task runs a web
server on the node that makes it possible to remotely look

at the Mammoth game data structures at run-time using a
standard web browser.

Of course, it is also possible to assign several tasks to a
node. For instance, to observe the behaviour of a newly cre-
ated NPC control algorithm, a NPC Controller task and a
JMonkeyGraphicalClient task are assigned to a node. Like-
wise, it is possible to assign several NPC Controller tasks to
a single node object to control several avatars from within
the same process.

4. EXPERIMENTS
The experiments presented in this paper are aimed at

demonstrating the fragility of performance measurements
obtained in a simulated MMOG environment. The exper-
imental environment we used is detailed in subsection 4.1.
The 5 different simulation setups we evaluated are presented
in subsection 4.2 and the results are summarized in subsec-
tion 4.3.

4.1 Experimental Environment
All experiments presented in this paper were conducted

using the Mammoth framework. For all the experiments,
the performance measurements were taken on a machine
with Quad-Xeon 2.6 GHz processors and 8 gigabytes of main
memory. In addition to this machine, the distributed exper-
iment also used 60 additional computers from the McGill
School of Computer Science computer labs. Each of these
machines is equipped with a processor that runs at a mini-
mum speed of 2 GHz and with at least 2 GB of memory.

All experiments were run on the same virtual game world,
which included multiple obstacles, such as buildings and
trees, and hundreds of game objects for players to pickup.
The RandomWanderer NPC control algorithm was used to
control the behaviour of the avatars. It instructs the con-
trolled game character to wander randomly in strait lines,
changing direction approximatively every second1. Each
change of direction requires to execute a modifying oper-
ation on the replicated object that represents the avatar.
This results in a remote method invocation from the node
on which the NPC controller is running to the node that
hosts the master object of the avatar.

As mentioned earlier, the Mammoth game architecture is
scalable. Master objects can be located on any node, and
as more players join the game, master objects can be mi-
grated from machine to machine to balance the load among
all connected nodes. Although such flexibility is required in
order to support thousands of players, the experiments we
conducted for this paper always used a single node to host
all the master objects. This node is subsequently called
the server. Having a single server makes sense in our case,
since we are not trying to evaluate the scalability of Mam-
moth, but rather evaluate the effects different simulation
setups can have on performance measurements. To simulate
worst-case load on the server, a ”complete view” interest
management algorithm was used. As a result, every game
state modification is broadcast to all other nodes, and there-
fore all players can see the movement of all other players.
Again, Mammoth supports more elaborate interest manage-

1Although the choice of direction is also random, previ-
ous experiments with approx. 40 students [5] have shown
that this type of computer-controlled players generate simi-
lar work load as real human players.



ment algorithms that avoid sending unnecessary state up-
dates to players, but this would just add unnecessary, player
position-dependent noise to our performance measurements.

The course of the individual experiments was always the
same. NPC controllers were started one at a time in 30 sec-
onds intervals. This gave the server node plenty of time to
setup a particular NPC player before the next one attempted
to connect. Three metrics were measured during each exper-
iment: the CPU utilization of the server process, the mem-
ory allocated to the server process and the network through-
put on the process’ network interface. Readings were taken
when the server achieved a load of 5,10,15,20,25,40, 50 and
60 clients. The cap of 60 players was chosen because that
was the highest number of players that all configurations
were able to support.

4.2 Evaluated Simulation Setups
This subsection describes the various simulation configu-

rations used to run the experiments. All the variations were
easily implemented in Mammoth by switching the network
engine (or removing it completely) and by running the NPC
agents in the same or in different nodes, or even in different
processes. A summary of the simulation setups is presented
in Table 1.

4.2.1 No (Network) Engine

• Measured node contains:

– Server task

– All NPC controller tasks running on 1 thread

– No replication engine

– No network engine

In the simplest simulation setup, both the server compo-
nent and the NPC controllers are executed using a single
thread within the same process. At every clock iteration,
the agents are queried in a round-robin fashion for new in-
structions. Agents interact directly with the objects found
in the server component, thus no network engine is needed.
No objects are ever replicated and consequently there is no
need for interest management either.

It should be noted that since the NPC controllers run
in the same process as the server component, the measure-
ments for this scenario include the load of both the server
component and the NPCs.

4.2.2 Fake (Network) Engine

• Measured node contains:

– Server task

– All NPC controller tasks, 1 threads per NPC con-
troller

– Replication engine with ”complete view” interest
management

– Fake network engine

In this simulation setup, each NPC has its own environ-
ment and runs in its separate thread. This means, when a
new NPC connects to the server component, it receives a
copy of every object it is interested in. It can then interact
with the world by executing actions on those objects.

Communication between NPCs and the server component
is achieved using the FakeNetworkEngine, which communi-
cates using a series of data structures. Messages are trans-
mitted instantly, as they are written to and read from main
memory. The FakeNetworkEngine for Mammoth was first
developed to simplify unit testing, but has since then proven
to be a valuable simulation tool when working on a single
node.

It should be noted, again, that since the NPC controllers
run in the same process as the server component, the mea-
surements for this scenario include the load of both the
server component and the NPCs.

4.2.3 Local Engine

• Measured node contains:

– Server task

– All NPC controller tasks, 2 threads per NPC con-
troller

– Replication engine with ”complete view” interest
management

– Stern network engine

This simulation setup is similar to the Fake Engine setup,
but this time a real socket-based communication engine is
used. Based on the SternNetworkEngine, this simulation
configuration uses a central communication hub that all nodes
connect to it. For the purpose of this paper, the hub is al-
ways spawned by the server, allowing all players to connect
to a centralized location.

As with the previous setup, both server processes and
NPCs are located in the same process. However, each NPC
has to spawn 2 threads, as one additional thread is required
to monitor the sockets for incoming traffic. In addition, all
communication is routed through the localhost network in-
terface.

Like in both previous scenarios, since the NPC controllers
run in the same process as the server component, the bench-
mark for this scenario includes the load of both the server
component and the NPCs.

4.2.4 Local Engine Separate NPC

• Measured node contains:

– Server task

– Replication engine with ”complete view” interest
management

– Stern network engine

• Other node, running on the same machine, contains:

– All NPC controller tasks

This simulation setup is identical the previous one ex-
cept for one key difference, which is that the NPC agents
are spawned in a separate process. This means that al-
though the computer used to run the experiments is subject
to the same load, only the load on the process that runs the
server component is measured. All communications between
the server component and the NPC agents is again routed
thought the localhost interface, using the Stern Network En-
gine.



Table 1: Overview of Different Simulation Setups
No Engine Fake Engine Local Engine LE Separate NPC Distributed Engine

NPC included in CPU Load Yes Yes Yes No No
NPC included in Memory Usage Yes Yes Yes No No
Bandwidth Measurable No No Yes Yes Yes
Interest Management Enabled No Yes Yes Yes Yes
Remote Method Invocations No Yes Yes Yes Yes
Number of Node Objects 1 n+1 n+1 n+1 n+1
Number of Processes 1 1 1 2 1+n
Number of Threads 1 n+1 2n+2 2n+2 2n+2
Number of Computers Used 1 1 1 1 n+1

4.2.5 Distributed (Network) Engine

• Measured node contains:

– Server task

– Replication engine with ”complete view” interest
management

– Stern network engine

• Other nodes, running on different machines, contain:

– 1 NPC controller task

This simulation setup moves the NPC agents to different
computers, alleviating the workload of the computer host-
ing the server component. This setup is the most realistic,
as it simulates different players using different computers
connecting to a centralized server.

As with the previous scenario, only the load from the
server component is measured.

4.3 Results
The CPU utilization, the memory allocated, and the data

throughput on the network interface of the process running
the server task are shown in Figures 2, 3 and 4.

The measurements were gathered until a total of 60 play-
ers were connected to the server. The Local Engine config-
uration was not able to scale beyond that point because of
a bandwidth and CPU overload. This is not surprising, as
this configuration has the highest work load, since a single
machine must manage the server task and the NPC con-
trollers in the same process, including their socket read and
write activities. It is interesting to compare these numbers
with the ones obtained by the Local Engine Separate NPC
engine. The comparison reveals that half of the CPU power
and an increasing amount of memory is spent on running
the NPCs.

If we compare CPU utilization between the different con-
figurations (see figure 2), we notice that Fake Engine, Dis-
tributed Engine and Local Engine Separate NPC have simi-
lar CPU load. This is not surprising for Distributed Engine
and Local Engine Seperate NPC, as their workload is similar
(no NPCs, but using socket communication). However, the
similarity with Fake is unexpected, as there is no correlation
between the workload generated by NPC using direct mem-
ory access to communicate and the workload of the server
which communicates using sockets. The low CPU load of
the No Engine configuration is not surprising, since elements
that create load in the system, such as interest management,
replication, remote method invocation and socket communi-
cation are not present.

The memory allocation needs of the various configurations
(see figure 3) also reveals some interesting patterns. Local
Engine and Fake Engine have memory requirements that
grow linearly as more clients are added to the system. This
is easily explained by the memory required by the NPC con-
trollers, which are stored in the same process as the server
component. Local Engine has an even higher memory re-
quirement, as it must provide memory to the network sock-
ets, which are not found in the Fake Engine. Even though
the No Engine configuration also stores its NPC controllers
in the same process, no replication engine is used, and hence
all NPCs can share the same game objects.

The memory requirements of the Local Engine Seperate
NPC and Distributed Engine are interesting, as they both
stabilize once 25 clients have connected to the system. This
can be explained by the fact that although additional clients
generate additional CPU load in the server, once the initial
data structures (hash tables, etc.) that help to keep track of
replicas and interest management have been allocated, con-
necting additional players requires only very little memory.

The bandwidth curves (see figure 4) are clearly exponen-
tial. Given the ”complete view” interest management algo-
rithm used in our experiments this is not surprising. The n
players generate 1 remote method invocation message every
second, which results in n2 updates that have to be prop-
agated to all player nodes per second. Throughput for the
Local Engine is much higher, as it includes the traffic gen-
erated by both the NPCs and the server component. Since
monitoring is done at the network interface, it is impossible
to differentiate traffic from the NPC and server component.
The bandwidth requirements for the Local Engine Separate
NPC setup was identical to the Local Engine one, and there-
fore omitted.

5. DISCUSSION
Typically, a simulation is designed to reproduce “real-

world” conditions as accurately as possible. In the context
of MMOGs, the parameters that are to be considered in-
clude the number of simulated players and the algorithms
that control the behaviour of the players. The experimen-
tal results presented in subsection 4.3 demonstrate that the
simulated performance of a server component also varies de-
pending on the type of communication used, the location of
the NPC controllers, and whether they execute in the same
process or even in the same thread.

For example, the No Engine scenario is the easiest con-
figuration to set up, as it includes no communication and
sharing of data between threads. Its results demonstrate
incredible scalability, as the CPU load and the allocated



0 10 20 30 40 50 60 70
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

No Engine
Fake Engine
Local Engine
Local Engine 
Separate NPC
Distributed Engine

Number of Clients

C
P

U
 U

til
iz

at
io

n

Figure 2: CPU Utilization

0 10 20 30 40 50 60 70
1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

No Engine
Fake Engine
Local Engine
Local Engine 
Separate NPC
Distributed Engine

Number of Clients

M
em

or
y 

Al
lo

ca
te

d 
(b

yt
es

)

Figure 3: Memory Utilization

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Local Engine
Distributed Engine

Number of Clients

Th
ro

ug
hp

ut
 (k

bi
t/s

)

Figure 4: Bandwidth Utilization



memory do not increase significantly as clients are added to
the experiment. However, this simulation does not provide
accurate performance information, as all CPU intensive op-
erations (interest management, serialization, network I/O)
are omitted.

Comparing Fake Engine and Local Engine provides a bet-
ter understanding of the load generated by using socket-
based communication. Both setup configurations are iden-
tical, except that Fake communicates using local memory
while Local Engine uses network sockets connected to local-
host. The difference between both curves indicates the non
negligible load created by the sockets. A careful inspection
using a profiler reveals that in addition to spending time
reading from and writing to sockets, a non-negligible time
is also spent on queueing data until it is ready to be trans-
mitted. This transmission overhead is often overlooked in
simulators.

The difference between the numbers obtained from the
Local Engine and Local Engine Separate NPC experiment
are interesting, since the difference between both curves pro-
vides insight into the load generated by the NPC controllers.
Again, surprisingly, this load is considerable. We conclude
from this that in order to run accurate performance bench-
marks in MMOGs, the control for simulated agents should
always be located in a separate process.

One interesting and encouraging statistic is the similarity
between the Local Engine Separate NPC and Distributed
Engine measurements. This similarity suggests that given
the proper conditions, it is possible to create a simulation on
a single machine that provides performance measurements
that closely reflect those obtained in a real distributed set-
ting. Of course, if measurements are to be taken that span
execution paths across several nodes, eġḟrom an NPC con-
troller node to the server and back again, then latency effects
encountered in a real distributed setting can not be ignored.
Hence, Local Engine Separate NPC can only be used if a net-
work latency simulator is inserted between the node running
the NPC agents and the node running the server. However,
the scalability of the Local Engine Separate NPC simulation
is still limited by the load generated by the NPC controllers
in the second process, since it runs on the same machine2.

6. CONCLUSION
This paper critically reflects on the use of simulated ex-

periments in the context of MMOGs, in particular when
the experiments are aimed at evaluating game performance
and server scalability. Five simulation setups were defined
within the Mammoth MMOG framework, 4 using a single
computer and 1 in a distributed setting. Each setup ran the
simulated players in a different way (using a single thread,
separate threads or separate processes) and used different
ways of communication between the players and the server.

An analysis of the gathered measurements – CPU load,
memory and bandwidth usage – showed non-negligible per-
formance variations, demonstrating the important influence
of the simulation setup on the performance results. We con-
clude that performance simulations for MMOGs must be de-
signed very carefully. It could even be argued that there is

2A different set of experiments that is not reported here in
detail has shown that the Distributed Engine can support
over 100 clients, whereas Local Engine Separate NPC caps
out at 75.

no substitute to testing a MMOG in live conditions, using a
large number of computers. We believe that running at least
one experiment in a real distributed environment is proba-
bly unavoidable in order to discover and/or understand the
performance costs associated with the used communication
technology irrespective of the lag introduced by the network.
Only then can a centralized simulation – one that is more
convenient to setup and run – produce measurements that
can be interpreted correctly.

Some performance changing factors are easily overlooked
when designing a simulation. For instance, as shown in our
experiments, the way the players are simulated – using a
single thread, using separate threads or using separate pro-
cesses – has a considerable impact on the measurements.
Likewise, the overhead of socket communication, such as
the flattening of data structures and the queuing performed
by the operating system, affects the performance and mem-
ory usage significantly. If these factors are not taken into
account, the accuracy of the measurements gathered during
the simulation is difficult to judge.

Of course, simulations can easily be used to measure other
experimental data. For instance, the number of messages
sent among the players and the server was identical in all
our simulation setups, provided that the simulation was run
with a network engine.

Acknowledgment
This work has been partially supported by NSERC, the Na-
tional Sciences and Engineering Research Council of Canada.

7. REFERENCES
[1] Freepastry, December 2009.

http://www.freepastry.org/.

[2] R. Balan, M. Ebling, P. Castro, and A. Misra. Matrix:
Adaptive middleware for distributed multiplayer
games. Lecture notes in computer science, 3790:390,
2005.

[3] A. Bharambe, J. Pang, and S. Seshan. Colyseus: A
distributed architecture for online multiplayer games.
2006.

[4] A. Bharambe, S. Rao, and S. Seshan. Mercury: a
scalable publish-subscribe system for internet games.
In Proceedings of the 1st workshop on Network and
system support for games, pages 3–9. ACM New York,
NY, USA, 2002.

[5] J. Boulanger, J. Kienzle, and C. Verbrugge.
Comparing interest management algorithms for
massively multiplayer games. In Proceedings of 5th
ACM SIGCOMM workshop on Network and system
support for games. ACM New York, NY, USA, 2006.

[6] W. Cai, P. Xavier, S. Turner, and B. Lee. A scalable
architecture for supporting interactive games on the
internet. In Proceedings of the sixteenth workshop on
Parallel and distributed simulation, pages 60–67. IEEE
Computer Society Washington, DC, USA, 2002.

[7] L. Chan, J. Yong, J. Bai, B. Leong, and R. Tan.
Hydra: a massively-multiplayer peer-to-peer
architecture for the game developer. In Proceedings of
the 6th ACM SIGCOMM workshop on Network and
system support for games, pages 37–42. ACM New
York, NY, USA, 2007.



[8] J. Chen, B. Wu, M. Delap, B. Knutsson, H. Lu, and
C. Amza. Locality aware dynamic load management
for massively multiplayer games. In Proceedings of the
tenth ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 289–300. ACM
New York, NY, USA, 2005.

[9] A. Denault, J. Kienzle, C. Dionne, and C. Verbrugge.
Object-oriented Network Middleware for Massively
Multiplayer Online Games. Technical Report
SOCS-TR-2008.5, McGill University, Montreal,
Canada, December 2008.

[10] C. Diot and L. Gautier. A distributed architecture for
multiplayer interactive applicationson the Internet.
IEEE network, 13(4):6–15, 1999.

[11] L. Fan, H. Taylor, and P. Trinder. Mediator: a design
framework for P2P MMOGs. In Proceedings of the 6th
ACM SIGCOMM workshop on Network and system
support for games, pages 43–48. ACM New York, NY,
USA, 2007.

[12] D. Fu and R. T. Houlette. Putting AI in
entertainment: An AI authoring tool for simulation
and games. IEEE Intelligent Systems, 17(4):81–84,
2002.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: Elements of reusable object-oriented
design, 1995.

[14] T. Iimura, H. Hazeyama, and Y. Kadobayashi. Zoned
federation of game servers: a peer-to-peer approach to
scalable multi-player online games. In Proceedings of
3rd ACM SIGCOMM workshop on Network and
system support for games, pages 116–120. ACM New
York, NY, USA, 2004.

[15] J. Kienzle, A. Denault, and H. Vangheluwe.
Model-based Design of Computer-Controlled Game
Character Behavior. In 10th International Conference
on Model Driven Engineering Languages and Systems
- MoDELS 2007, Nashville, TN, USA, Oct. 1-5, 2007,
number 4735, pages 650 – 665, October 2007.

[16] B. Knutsson, H. Lu, W. Xu, and B. Hopkins.
Peer-to-peer support for massively multiplayer games.
In INFOCOM 2004. Twenty-third AnnualJoint
Conference of the IEEE Computer and
Communications Societies, volume 1, 2004.

[17] H.-H. Lee and C.-H. Sun. Load-balancing for
peer-to-peer networked virtual environment. In
NetGames ’06: Proceedings of 5th ACM SIGCOMM
workshop on Network and system support for games,
page 14, New York, NY, USA, 2006. ACM.

[18] M. Matskin. Scalable agent-based simulation of
players in massively multiplayer online games. In
Eighth Scandinavian Conference on Artificial
Intelligence: SCAI’03, page 153. IOS Press, 2003.

[19] C. Onuczko, M. Cutumisu, D. Szafron, J. Schaeffer,
M. McNaughton, T. Roy, K. Waugh, M. Carbonaro,
and J. Siegel. A Pattern Catalog For Computer Role
Playing Games. In Game-On-NA 2005 - 1st
International North American Conference on
Intelligent Games and Simulation, pages 33 – 38.
Eurosis, August 2005.

[20] OPNET. ACE Analyst and ACE Live.
http://www.opnet.com/, 2010.

[21] A. Raja and M. Katchabaw. Using Synthetic Players

to Generate Workloads for Networked Multiplayer
Games. In 3rd International North American
Conference on Intelligent Games and Simulation,
2007.

[22] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location, and routing for
large-scale peer-to-peer systems. Lecture Notes in
Computer Science, pages 329–350, 2001.

[23] Unreal Technology. The Unreal Engine 3.
http://www.unrealtechnology.com/html/technology/ue30.shtml,
2007.

[24] Z. Zhou, H. Wang, J. Zhou, L. Tang, K. Li, W. Zheng,
and M. Fang. Pigeon: a framework for testing
peer-to-peer massively multiplayer online games over
heterogeneous network. In 3rd IEEE Consumer
Communications and Networking Conference, 2006.
CCNC 2006, volume 2, 2006.


