
Fairness in reactive programming

Andrew Cave

McGill University

January 25, 2013

Joint work with Francisco Ferreira,
Prakash Panangaden and Brigitte Pientka

1 / 14

Introduction

I Reactive programming languages provide a setting to
implement GUIs, operating systems, etc.

I Functional reactive programming (FRP) raises level of
abstraction [Elliott and Hudak ’97]

I Main concepts:
I Signals – time varying values
I Signal transformers – functions from signals to signals

I Unfortunately, many FRP systems allow unimplementable
non-causal signal transformers

2 / 14

Background

I Linear Temporal Logic (LTL) can act as a type system for
(discrete time) FRP (Jeffrey and Jeltsch, 2012). Summarized:

Logic Types/Programming

�A always A signals (streams) of As

♦A eventually A events

©A next A delayed value

I Advantage of logical approach: �A→ �B captures precisely
causal stream transformers

3 / 14

Contribution

Our contribution
Convenient ML-like language and type system for writing re-
active programs which guarantees liveness properties

I The missing piece of the LTL ↔ FRP correspondence:
proofs ↔ programs

I Example: A type precisely capturing causal fair
schedulers

4 / 14

Example 1: Eventualities

I We can write programs like the following:

evapp : ♦ A → � (A → B) → ♦ B
evapp ea fs = case ea of
| Now x ⇒ Now ((head fs) x)
| Later ea’ ⇒ let • ea’’ = ea’

• fs’ = tail fs
in Later (• (evapp ea’’ fs’))

I “Given an eventual A event and a stream of time-varying
functions, eventually fire a B event”

I Type guarantees eventual delivery of a B (given eventual
delivery of the A event)

I Type is a theorem of LTL; program is a proof

I Introduction form for © is •: delays a value

I Causality enforced: variables bound under • can only be used
under • (like Krishnaswami et al, 2011, 2012)

5 / 14

Example 2: Fair schedulers

I A selling point of LTL is its ability to express fairness

I Prior FRP systems cannot express fairness

I We can express a type of fair schedulers:

�A→ �B → Fair A B

I Any inhabitant is guaranteed fair and causal
I What do we mean by “fair”?

I Infinitely many As and infinitely many Bs

e.g. the following are considered fair:

abababababababa...
babaabaaabaaaab...

6 / 14

Logical foundation for reactive programming

I Constructive variant of LTL

I We have only © modality

I Adds least and greatest fixed points µ and ν to LTL (in the
spirit of the modal µ-calculus)

I The standard modalities are then defined:

�A ≡ νX .A×©X
♦A ≡ µX .A +©X
A U B ≡ µX .B + A×©X

I Strict positivity restriction on bodies of µ and ν

I We program with primitive (co)recursion operators

I i.e. proof terms for ν, µ are (co)induction operators

7 / 14

Expressing fairness in our logical foundation

I Now we can express a type of streams fairly interleaving As
and Bs:

Fair A B ≡ νX .A U (B ×©(B U (A×©X)))

I Can now easily implement a variety of fair schedulers with
primitive (co)recursion

8 / 14

Technical Contributions

I A foundational system for programming causal reactive
programs with familiar notions of (co)recursion.

I Suitable for expressing liveness properties: eventualities and
fairness

I Type system/proof system is sound for LTL

I Operational semantics

I Type safety proofs

I Denotational semantics (in progress)

I Soundness & adequacy proofs (in progress)

I Mechanization (in progress)

9 / 14

Future Work

I Elaboration of structurally recursive programs into our
foundational language with primitive (co)recursion operators

I Structural termination checking and productivity checking

I Prototype implementation (in progress)

10 / 14

Thanks!

11 / 14

12 / 14

In the foundational language with primitive (co)recursion, evapp
elaborates to the following:

evapp : ♦A→ �(A→ B)→ ♦B
evapp ≡ λea. prec ea (y .

case y of

|inl x 7→ λfs. inl((hd fs) x)
|inr frec 7→ λfs.

let • frec ′ = frec in

let • fs ′ = tl fs in

inr (• (frec ′ fs ′))
)

13 / 14

Γ ` M : µX .F x : F (C) ` N : C

Γ ` prec M (x .N) : C

14 / 14

