Design and Challenges of a Lightweight
Container-Based Architecture for Multi-Clouds

Syed Ahmed and Muthucumaru Maheswaran
School of Computer Science, McGill University, Montreal, Canada
Email: syed.ahmed4 @mail.mcgill.ca, maheswar@cs.mcgill.ca

Abstract—Cloud computing is a major part of the modern
computing landscape. Although cloud computing systems already
offer many advantages, there is a need to interconnect them
such that resources from one provider can be substituted for
resources from another provider. For existing cloud providers
such a marketplace offers many advantages and disadvantages.
In this paper, we outline an architecture for creating an multi-
cloud without the full cooperation of the participating cloud
providers. Our multi-cloud architecture leverages several new
technologies that have started gaining a foothold in the industry
such as Linux containers and software defined networking. We
present a detailed description of the architecture and explain the
challenges that need to be addressed in realizing it. In particular,
we want an multi-cloud that is lightweight as possible and does
not create a significant compute, memory, or storage footprint
by itself.

I. INTRODUCTION

Cloud computing is offered by large number of providers
at this point in time: Amazon, Google, and Microsoft are few
notable ones. Each cloud provider has its own conventions
in terms of dimensioning resources like compute, storage and
network. They also differ in terms of their pricing and policies
for the resource units they offer to their customers. This
creates a situation for the customer, where migrating a cloud
deployment from one provider to another becomes a costly
endeavor — this is referred to as the vendor lockin. To have a
reliable and cheap cloud deployment the cloud customer needs
to avoid vendor lockin so that the customer can migrate the
deployment to benefit from the better offering.

Apart from the issue of vendor lockin, there is quite a bit
of differences among the cloud offerings from the different
vendors. For example, Amazon AWS offers GPU instances
which are not offered by other major providers. Azure and
AWS offer Windows OS images whereas Google Compute
Engine (GCE) is still in beta (no SLA guarantees offered at
this time). This leads to user preferring one cloud over the
other and further complicates comparison of cloud instances
across the different providers.

Further, the cloud providers differ in terms of how they
price their instances. For example AWS offers three pricing
schemes: on-demand — where the user pays an hourly fixed
price, reserved — where a bulk price is paid to reserve an
instance for a longer duration (an year or more) and spot
instances — where the user can bid on instances using an
auction mechanism. GCE on the other hand offers a minute-
granular pricing. Depending on the type of workload, budget
and complexity involved, a particular cloud provider may be
preferred by the customer over others in terms of pricing.

Geographies also play an important role in limiting the
choices customers have in terms of cloud providers. Not all
providers are everywhere and depending on cloud customers’
locations and from where their applications get most of the
requests from, they may prefer certain providers with instal-
lations in given geographic localities. Amazon has the largest
installation for a public cloud distributed over 9 regions across
the Internet whereas Google has its GCE in only 3 regions.
Apart from this, users might have sensitive data that they may
not wish to share with the provider due to lack of trust or
because some laws may prevent their data being stored on an
overseas Server.

Different models have been proposed to overcome the
above mentioned issues. All of them try to combine various
providers into a consistent single cloud layer which is agnostic
of a provider. Depending on the level of engagement and agree-
ment between the different providers, [1] broadly classifies the
current initiatives into three different models.

e Inter-Cloud: This is an ideal collaboration between
different cloud providers. In this type of a model,
there are standard APIs for communication which are
agreed upon or implemented by all providers. This
could be considered as an internet of clouds.

e Federated Cloud: In this model, a group of providers
mutually agree to collaborate and share resources
among themselves. This is done using agents which
translate requests from one cloud to another. To the
end user, they expose a common API with vendor
specific additions.

o Multi-Cloud: This model overlays a virtual cloud on
top of disjoint clouds. In Multi-cloud, there is no col-
laboration between individual cloud providers. All the
orchestration is done by a third party agent or a proxy.
The agent exposes a standard interface to the user and
translates it to provider specific calls transparently. It
also creates an overlay network in which hosts running
on different providers are seamlessly connected.

It is in the best interest of a cloud provider to maintain
competitive advantage. In doing so they may not wish to
share their unique offerings with others. Providers may also
make migration inherently complex to retain customers. This
makes the vision of global inter-cloud difficult to achieve. In
fact, even getting a federated cloud of top providers can be
difficult to realize. This leads us to focus on multi-clouds as
they do not require collaboration with individual providers, can
be implemented as a layer on top of existing infrastructure and
can combine public and private clouds seamlessly.

OOOBaE

VM1 VM2

o

Hypervisor

Hardware

Fig. 1: Containers placement in a typical cloud

In this paper, we present a multi-cloud architecture using
containers as the isolation principle. We implement an overlay
network on top of existing cloud networks using VXLAN as
the tunneling protocol to provide a virtual private cloud (VPC)
for each cloud tenant. Finally, we explore optimizations that
can be performed as third party service providers to optimize
the workload performance of tenants and reduce storage and
migration costs.

The proposed architecture addresses many of the concerns
raised above. Firstly, it is not tied to a particular provider
which prevents vendor-lockin. There is a consistent API which
transparently allocates resources on the right cloud based
on the requirements. And since this implements a seamless
overlay network, cloud providers from any location can be
leveraged.

The intelligent workload placement algorithm makes sure
that each container on the host is not being affected by the
operations of other containers on the same host. Finally, a
minimal shared filesystem allows for lower footprint when
migrating containers across different hosts.

II. CONTAINERS AS VIRTUALIZATION PLATFORMS

Containers are a method of operating system-level virtual-
ization which are lighter than full virtual machines (VMs). Un-
like VMs where each instance runs its own kernel and provides
complete isolation, containers share the same host kernel and
provide isolation of resources like processes, filesystems, IPC,
network, CPU, Memory and I/O based on kernel primitives
(namespaces & cgropus in Linux) [2]. This enables them to
have very low overhead on various operations when compared
to traditional VMs [3].

Different operating systems offer their own version of con-
tainers, although not all of them implement the same isolation
primitives. The popular ones include Freebsd jails, Solaris
containers and Linux containers [4], [5], [6]. In this paper we
focus on the containers in Linux. Various implementations of
linux containers exist most popular are OpenVZ, Vserver and
LXC. In our study we focus on LXC as it is the most popular
implementation and does not require any patches to the kernel.

Due to many layers of abstraction, traditional VMs have
lower performance than baremetal OS. Depending on the
type of workload and resources utilized, this performance

degradation can become significant [3]. Containers on the
other hand share the same kernel and hence avoid the ab-
straction overhead. This leads to near-baremetal performance
on many operations [7]. As there is no kernel to boot from,
containers have faster boot times and use significantly lower
CPU/memory when they are idle when compared to VMs
(Because even in idle state, VMs run the kernel which occupies
memory/CPU) . Containers have a higher density on a given
hardware meaning, given the same hardware, we can run more
containers than VMs [8].

Despite their advantages, containers still have some inher-
ent issues — host and guest OS decoupling is one of the impor-
tant problems. With full virtualization, the guest could be very
different from the host such as non-native kernels (Windows
on Linux) or multiple kernels with different versions. This is
not possible using containers as each container is tied to the
host kernel. Despite providing isolation, studies have shown
that workloads on one container can affect the performance of
another container despite them being completely interrelated
[7]. This is not seen in traditional VMs as the underlying
hypervisor offers full isolation. Since containers share the
same kernel, a security exploit in one container can lead to
the attacker being able to access every other container. For
example, CVE 2013-1858 exposed a bug in clone() using the
user namespace in Linux which led to full root privilages on
the base host [8].

Some container implementations like Docker enforce a
strict workflow model [9]. This makes it difficult to port
traditional applications to a container based environment. Also,
containers even though they isolate resources, they do not
actively communicate this to the application. For example in
Linux based containers, if the container is allocated only one
CPU, it can still see all CPUs and applications which rely on
this metric, like deciding number of threads to spawn or how
much memory to allocate, can have undefined behavior.

III. CONTAINER-BASED MULTI-CLOUDS
A. Overview

We aim to build a container based multi-cloud by im-
plementing an overlay on top of existing public clouds. We
use LXC as the container interface running on top of VMs
provisioned in different clouds. To enable communication
between containers in different clouds, we implement an
overlay network based on VXLAN tunneling using Open
vSwitch (OVS). We use a central SDN controller based on
Opendaylight which configures and installs flows on the OVS
[10]. The entire system is managed by a central orchestrator.
The orchestrator exposes a public API and is the endpoint to
which users connect and request for containers.

Current multicloud offerings focus on a broker based
architecture where users are given an interface to manage
multiple clouds from a single console. This offers a mere
convenience to the user and does not abstract the underlying
complexity from the customer [11]. Our primary goal for
building this system is to ensure a consistent interface across
multiple cloud with minimal or no cooperation between the
underlying cloud providers. This would prevent vendor-lockin
and allows customers to optimize their deployments across
multiple providers. The proposed architecture has a relatively

SDN Controller

it

Fig. 2: Multicloud Architecture: Two VMs on different clouds A &
B host containers which belong to different isolated guest networks
sharing the same IP address. The OVS bridge lzc — br maintains
isolation and routes between different hosts, maintaining an overlay.
An SDN controller installs flows on the OVS and the host itself is
managed by a central orchestrator.

small footprint which leads to saving in terms of hardware
and VMs allocated on remote clouds. The small footprint also
ensures ease of migration if the user wants to migrate to a
different provider. Finally, SDN enables seamless networking
across multiple clouds and reconfigurations happen transpar-
ently of container migrations.

B. Container-Based Multi-Clouds Architecture

Figure 2 shows the basic architecture of the container-
based multi-cloud. Each cloud provider hosts the base VMs
which are responsible for running the containers. By default,
these hosts are assigned a public IP which is managed by
the cloud provider. The base VMs are allocated based on the
capacity requirements which are decided by the orchestrator.
If there is a need to spin up a VM to host more containers,
the orchestrator decides which is the best cloud to allocate the
base VM on. Once a base VM is allocated, the orchestrator
installs an OVS bridge on the host and reassigns the public
IP to the bridge. The external interface is reconfigured as a
port on the OVS bridge. Finally, the bridge is configured to
connect to the SDN controller. The OVS is responsible for
encapsulating and routing traffic from one host to another.

We use LXC as our container implementation as it allows
us to achieve near VM experience in that it gives us complete
shell access making the container behave like a self-contained
operating system instead of an application isolation mechanism
(e.g., Docker, systemd-nspawn, Imctfy) [9], [12], [13].

When a container comes up, a virtual ethernet pair is
created. One end of the pair is attached to the container and
the other end is attached to the OVS bridge. Both interfaces
act like a pipe. Packets sent to one interface comes out of the
other. OVS also associates this interface with an Openflow
port which is used to configure flows. The OVS acts as
the default gateway for every container. A packet destined
to another container is forwarded to the local OVS via the

virtual ethernet pair. OVS looks up its flow table to decide the
destination container. If the destination container resides on
another host, OVS encapsulates and tunnels the packet using
VXLAN to the destination host using the public interface.
Once the packet reaches the destination OVS, it is decapsulated
and the VXLAN header is removed to get the original packet.
The OVS looks at the flow table to decide which destination
container the packet is to be sent and it forwards it to the
correct virtual interface.

An orchestrator is responsible for managing containers on
all the hosts. The orchestrator keeps track of the current state
of each container and keeps the metadata of each of the
container’s properties like the host; IP address; image; CPU
and memory restrictions. Any operation on the container (start,
stop, destroy) has to go through the orchestrator. In addition
to this, the orchestrator is also responsible for collecting
monitoring information from the host and the containers which
will help in deciding optimal placement of workloads and if
new base hosts need to be spawned. The orchestrator is also
responsible for maintaining a global view of the cloud. This
enables it to control the networking of all hosts via SDN. In
our architecture, we use Opendaylight as the SDN controller
with Openflow to communicate between the controller and the
OVS. In essence, we are creating an overlay network on top
of the existing cloud-network and control it using SDN via a
central orchestrator.

C. Secondary Storage Mechanisms

Containers implementations such Docker and LXC support
the use of an overlay filesystem in which there is a base image
which is read-only and any changes that are done go to a
different place transparent to the user. However, the base image
which is read-only is replicated across containers. We intend
to develop a base layer which can be shared among containers
running on the same host. This image will be the same for any
host in the multi-cloud system. This would make the migration
footprint very small as only the non-unique files need to be
replicated.

D. Workload Adaptation

Studies show that unlike complete VMs, containers have
an inherent problem with resource isolation. Though the con-
tainers are good at isolating CPU resources, [7] shows that
there is a 50% degradation in performance of a container on
memory heavy workloads when other containers on the same
host are also performing memory heavy workloads. This is
partly due to the fact that they share the same underlying kernel
and operations of all containers are ultimately handled by the
same kernel. This could lead to situations where one container
can overwhelm the kernel indirectly causing other containers
to have degraded performance. We propose an intelligent
workload migration algorithm which continuously monitors
the VMs and decides where the next workload should run or
if containers-to-hosts assignments need to be rebalanced.

Each container and the hosts on which these containers are
instantiated, periodically report their CPU, memory and I/O
usage to the central orchestrator. The orchestrator balances the
workload based on usage patterns. For example, it will try
to allocate two containers executing memory intensive jobs

on separate hosts. It may also dynamically decide to migrate
containers from one host to another to balance the main hosts
usage and reduce I/O between different containers.

Current live migration techniques of VMs rely on under-
lying hardware support to make the migration possible. More-
over, migration can only be done between same hypervisors.
i.e., one cannot live migrate from Xen to VMWare or vice-
versa. In a multi-cloud scenario, both of the above conditions
are not possible as the hardware is different on different
clouds and users don’t have access to the cloud hardware.
Implementing migration on a container level is possible as
the underlying hardware is abstracted away by the host VM.

To migrate a container, three entities need to be transferred
to the remote host. Memory, filesystem and process state. The
first state of migration is the bulk transfer phase where the
memory pages belonging to that container are transfered to
the remote host. After the memory transfer is complete, the
filesystem is copied. Finally, the process state for each process
(registers, open files, sockets) is transferred to the remote
host. Note that during the copy, there may be active changes
happening on both memory and filesystem that will make the
transferred pages outdated. The process can also open and
close files and socket which will make its state inconsistent
with the remote state hence preventing migration. To overcome
this, we will keep a diff of all the changes that are happening in
the container (memory, filesystem and state) and keep updating
the remote host. Eventually, the container will have a pause
time. i.e time where there is no activity greater than the amount
of time taken to transfer the difference. This means that during
that time, both the remote and local containers are in sync.
Once this event triggers, the local container is paused and the
remote container is started completing the migration.

Finally, the SDN controller is informed about the change
and new flows are installed on the respective OVS bridges. The
network is reconfigured so that that container gets the same
private IP address in the remote location. If the container had a
public IP address, a redirector is installed at the initial location
and old connections are forwarded to the new location whereas
the new connections are made to the new IP.

Once the migration is completed and the new container is
running, the old container is destroyed by the orchestrator and
metadata for that container is updated with new values.

IV. IMPLEMENTATION CHALLENGES

Currently checkpointing & migration of containers is not
supported by the Linux kernel. Memory and process migration
require changes at the kernel level which can be non-trivial.
The architecture relies on tunneling between different clouds.
This can become a bottleneck as we don’t have control over
the underlying network. Depending on the number of flows
and traffic, the OVS itself can become a bottleneck as it is
running on top of a VM instead of a dedicated host and it is
responsible for routing the traffic of all the containers in the
host. OVS could also become a single point of failure for a
host as a crash would stop connectivity of all the containers in
that particular host. This could however be prevented by using
a redundant OVS with a trade-off of increasing the complexity
of the system.

V. RELATED WORK

[1] discusses various cloud architectures extensively with
multi-cloud being one of them. mOSAIC built an opensource
API and platform for multiple clouds [14]. They introduce
the concept of a component as the resource abstraction for a
cloud. Applications use components which are later translated
to actual cloud components like VMs using different plugins
for different clouds. Although their platform has APIs for
multiple clouds, Networking and management of VMs is left
up to the user.

Apache JClouds is a multi-cloud toolkit written in Java
[15]. It exposes a standard API for managing compute ser-
vices (VMs) and storage services. The management of these
resources is left to the user. This also does not offer a net-
work overlay which is essential for seamless communication
between different clouds.

Apache Libcloud is similar to JCloud except that it is
written in Python [16]. Although it supports fewer clouds than
JCloud, the core concepts remain the same. i.e providing a
consistent API to end users for each cloud.

All the above approaches still work on the resources
provided by the respective clouds i.e., VMs. They do not
however tackle networking between different clouds.

[17] proposes a publish-subscribe mechanism for routing
messages between different clouds. Each client (VM) can be
both a publisher and subscriber. Brokers are the entitles that
perform matching and forwarding of messages. Each client
sends its publications to its respective broker which is in-turn
connected to other Brokers creating a virtual network on top
of a physical network.

[18] uses user level virtual routers to create an overlay
network. One VR is deployed per broadcast domain and/or site
and a module on each host intercepts packets and tunnels it to
the VR. Once the packet reacher VR, it routes the packet to
the destination VR where the packet is decapsulated and sent
to the correct host. This system relies on having additional
nodes just as routers and is not scalable as the VR becomes a
single point of failure for the entire site. Also, all the VRs are
assumed to be known to other VRs.

[19] proposes a testbed for prototyping Information-Centric
Networking (ICN) testbeds using containers. However, in this
deployment, the primary goal is to prototype and test various
ICN protocols instead of developing a generic multi-cloud
where end users can run their applications.

To the best of our knowledge, Rancher is the only multi-
cloud container based platform [20]. The system built keeping
Docker as the base container implementation mechanism. It
creates an overlay using IPSec tunnels for interconnection
between different clouds. However, Docker does not support
generic applications as docker philosophy promotes running
only one application in a container this means that applications
need to be modified in order for them to run on Rancher.
Moreover, Rancher does not support container migration and
workload adoption which makes it prone to the inherent
problems that containers have.

VI. CONCLUDING REMARKS AND FUTURE WORK

We propose an overlay-based architecture for multiclouds
using containers and SDN. We highlight current challenges in
developing an inter-cloud system and our proposed architecture
address some of those points. We also discuss intelligent
workload placement and migration techniques. There is a lot
of work to be done in ensuring effective isolation among
containers. Kernel support for migration and checkpointing
needs to be developed for the workload allocation algorithm
to manage containers more efficiently.

REFERENCES

[1] N. Grozev and R. Buyya, “Inter-cloud architectures and application
brokering: taxonomy and survey,” Software: Practice and Experience,
vol. 44, no. 3, pp. 369-390, 2014.

[2] R. Rosen, “Resource management: Linux kernel namespaces and
cgroups,” [Online; accessed 2-Feb-2014].

[31 W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and linux containers,”
technology, vol. 28, p. 32, 2014.

[4] P-H. Kamp and R. N. Watson, “Jails: Confining the omnipotent root,” in
Proceedings of the 2nd International SANE Conference, vol. 43, 2000,
p. 116.

[5] D. Price and A. Tucker, “Solaris zones: Operating system support for
consolidating commercial workloads.” in LISA, vol. 4, 2004, pp. 241—
254.

[6] M. Helsley, “Lxc: Linux container tools,” IBM devloperWorks Technical
Library, 2009.

[71 M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and
C. A. De Rose, “Performance evaluation of container-based virtualiza-
tion for high performance computing environments,” in Parallel, Dis-
tributed and Network-Based Processing (PDP), 2013 21st Euromicro
International Conference on. 1EEE, 2013, pp. 233-240.

[8] R. Rosen, “Linux containers and the future cloud.”

[91 D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux Journal, vol. 2014, no. 239, p. 2, 2014.

[10] A. OpenDaylight, “Linux foundation collaborative project.”

[11] Rightscale, “Rightscale hybrid cloud,” [Online; accessed 2-Feb-2014].

[12] GNU, “systemd-nspawn lightweight namespace container,”
http://www.freedesktop.org/software/systemd/man/systemd-
nspawn.html, [Online; accessed 2-Feb-2014].

[13] Google, “LMCTFY Google container stack,”
https://github.com/google/Imctfy, [Online; accessed 2-Feb-2014].

[14] D. Petcu, B. Di Martino, S. Ventiginque, M. Rak, T. Mahr, G. E. Lopez,
F. Brito, R. Cossu, M. Stopar, S. Sperka et al., “Experiences in building
a mosaic of clouds,” Journal of Cloud Computing, vol. 2, no. 1, pp. 1-
22, 2013.

[15] A. S. Foundation, “Apache jcluods: The java multi-cloud toolkit,”
[Online; accessed 2-Feb-2014].

[16] ——, “Apache libcloud: Python library for interacting with cloud
service providors,” [Online; accessed 2-Feb-2014].

[17] M. Ficco, L. Tasquier, and B. Di Martino, “Interconnection of federated
clouds,” in Intelligent Distributed Computing VII. Springer, 2014, pp.
243-248.

[18] M. Tsugawa, A. Matsunaga, and J. Fortes, “User-level virtual network
support for sky computing,” in e-Science, 2009. e-Science’09. Fifth
IEEE International Conference on. 1EEE, 2009, pp. 72-79.

[19] H. Asaeda, R. Li, and N. Choi, “Container-based unified testbed for
information-centric networking,” Network, IEEE, vol. 28, no. 6, pp.
60-66, 2014.

[20] Rancher, “Rancher: Portable aws-style infrastructure service for
docker,” [Online; accessed 2-Feb-2014].

